On Pre-Novikov Algebras and Derived Zinbiel Variety
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a non-associative algebra $A$ with a derivation $d$, its derived algebra $A^{(d)}$ is the same space equipped with new operations $a\succ b = d(a)b$, $a\prec b = ad(b)$, $a,b\in A$. Given a variety $\mathrm{Var} $ of algebras, its derived variety is generated by all derived algebras $A^{(d)}$ for all $A$ in $\mathrm{Var}$ and for all derivations $d$ of $A$. The same terminology is applied to binary operads governing varieties of non-associative algebras. For example, the operad of Novikov algebras is the derived one for the operad of (associative) commutative algebras. We state a sufficient condition for every algebra from a derived variety to be embeddable into an appropriate differential algebra of the corresponding variety. We also find that for $\mathrm{Var} = \mathrm{Zinb}$, the variety of Zinbiel algebras, there exist algebras from the derived variety (which coincides with the class of pre-Novikov algebras) that cannot be embedded into a Zinbiel algebra with a derivation.
Keywords: Novikov algebra, derivation, dendriform algebra
Mots-clés : Zinbiel algebra.
@article{SIGMA_2024_20_a16,
     author = {Pavel Kolesnikov and Farukh Mashurov and Bauyrzhan Sartayev},
     title = {On {Pre-Novikov} {Algebras} and {Derived} {Zinbiel} {Variety}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a16/}
}
TY  - JOUR
AU  - Pavel Kolesnikov
AU  - Farukh Mashurov
AU  - Bauyrzhan Sartayev
TI  - On Pre-Novikov Algebras and Derived Zinbiel Variety
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a16/
LA  - en
ID  - SIGMA_2024_20_a16
ER  - 
%0 Journal Article
%A Pavel Kolesnikov
%A Farukh Mashurov
%A Bauyrzhan Sartayev
%T On Pre-Novikov Algebras and Derived Zinbiel Variety
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a16/
%G en
%F SIGMA_2024_20_a16
Pavel Kolesnikov; Farukh Mashurov; Bauyrzhan Sartayev. On Pre-Novikov Algebras and Derived Zinbiel Variety. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a16/

[1] Bai C., Bellier O., Guo L., Ni X., “Splitting of operations, Manin products, and Rota–Baxter operators”, Int. Math. Res. Not., 2013 (2013), 485–524, arXiv: 1106.6080 | DOI | MR | Zbl

[2] Balinskii A.A., Novikov S.P., “Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras”, Sov. Math. Dokl., 32 (1985), 228–231 | MR | Zbl

[3] Bokut L.A., Chen Y., “Gröbner–Shirshov bases and their calculation”, Bull. Math. Sci., 4 (2014), 325–395, arXiv: 1303.5366 | DOI | MR | Zbl

[4] Bokut L.A., Chen Y., Zhang Z., “Gröbner–Shirshov bases method for Gelfand–Dorfman–Novikov algebras”, J. Algebra Appl., 16 (2017), 1750001, 22 pp., arXiv: 1506.03466 | DOI | MR | Zbl

[5] Bremner M.R., Dotsenko V., Algebraic operads. An algorithmic companion, CRC Press, Boca Raton, FL, 2016 | DOI | MR | Zbl

[6] Dotsenko V., Tamaroff P., “Endofunctors and Poincaré–Birkhoff–Witt theorems”, Int. Math. Res. Not., 2021 (2021), 12670–12690, arXiv: 1804.06485 | DOI | MR

[7] Dzhumadil'daev A.S., “Codimension growth and non-Koszulity of Novikov operad”, Comm. Algebra, 39 (2011), 2943–2952 | DOI | MR | Zbl

[8] Dzhumadil'daev A.S., Ismailov N.A., “$S_n$- and ${\rm GL}_n$-module structures on free Novikov algebras”, J. Algebra, 416 (2014), 287–313 | DOI | MR | Zbl

[9] Dzhumadil'daev A.S., Löfwall C., “Trees, free right-symmetric algebras, free Novikov algebras and identities”, Homology Homotopy Appl., 4 (2002), 165–190 | DOI | MR | Zbl

[10] Gel'fand I.M., Dorfman I.Ya., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI | MR

[11] Ginzburg V., Kapranov M., “Koszul duality for operads”, Duke Math. J., 76 (1994), 203–272, arXiv: 0709.1228 | DOI | MR | Zbl

[12] Gubarev V.Yu., “Poincaré–Birkhoff–Witt theorem for pre-Lie and post-Lie algebras”, J. Lie Theory, 30 (2020), 223–238, arXiv: 1903.02960 | MR | Zbl

[13] Gubarev V.Yu., Kolesnikov P.S., “Operads of decorated trees and their duals”, Comment. Math. Univ. Carolin., 55 (2014), 421–445, arXiv: 1401.3534 | MR | Zbl

[14] Guo L., An introduction to Rota–Baxter algebra, Surv. Mod. Math., 4, International Press, Somerville, MA, 2012 | MR | Zbl

[15] Hong Y., Li F., “Left-symmetric conformal algebras and vertex algebras”, J. Pure Appl. Algebra, 219 (2015), 3543–3567 | DOI | MR | Zbl

[16] Kac V., Vertex algebras for beginners, Univ. Lecture Ser., 10, American Mathematical Society, Providence, RI, 1998 | DOI | MR | Zbl

[17] Kolesnikov P.S., “Varieties of dialgebras, and conformal algebras”, Sib. Math. J., 49 (2008), 257–272, arXiv: math.QA/0611501 | DOI | MR | Zbl

[18] Kolesnikov P.S., Sartayev B.K., “On the embedding of left-symmetric algebras into differential Perm-algebras”, Comm. Algebra, 50 (2022), 3246–3260, arXiv: 2106.00367 | DOI | MR | Zbl

[19] Kolesnikov P.S., Sartayev B.K., Orazgaliev A., “Gelfand–Dorfman algebras, derived identities, and the Manin product of operads”, J. Algebra, 539 (2019), 260–284, arXiv: 1903.02238 | DOI | MR | Zbl

[20] Loday J.-L., “Dialgebras”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7–66, arXiv: math.QA/0102053 | DOI | MR | Zbl

[21] Sartayev B., Kolesnikov P., “Noncommutative Novikov algebras”, Eur. J. Math., 9 (2023), 35, 18 pp., arXiv: 2204.08912 | DOI | MR | Zbl

[22] Vallette B., “Manin products, Koszul duality, Loday algebras and Deligne conjecture”, J. Reine Angew. Math., 620 (2008), 105–164, arXiv: math.QA/0609002 | DOI | MR | Zbl

[23] Xu X., “Quadratic conformal superalgebras”, J. Algebra, 231 (2000), 1–38, arXiv: math.QA/9911219 | DOI | MR | Zbl

[24] Xu Z., Hong Y., One-dimensional central extensions and simplicities of a class of left-symmetric conformal algebras, arXiv: 2304.05001