@article{SIGMA_2024_20_a15,
author = {Freddy Cachazo and Nick Early and Yong Zhang},
title = {Color-Dressed {Generalized} {Biadjoint} {Scalar} {Amplitudes:} {Local} {Planarity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a15/}
}
TY - JOUR AU - Freddy Cachazo AU - Nick Early AU - Yong Zhang TI - Color-Dressed Generalized Biadjoint Scalar Amplitudes: Local Planarity JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a15/ LA - en ID - SIGMA_2024_20_a15 ER -
Freddy Cachazo; Nick Early; Yong Zhang. Color-Dressed Generalized Biadjoint Scalar Amplitudes: Local Planarity. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a15/
[1] Adamo T., Carrasco J.J.M., Carrillo-González M., Chiodaroli M., Elvang H., Johansson H., O'Connell D., Roiban R., Schlotterer O., Snowmass white paper: the double copy and its applications, arXiv: 2204.06547
[2] Agostini D., Brysiewicz T., Fevola C., Kühne L., Sturmfels B., Telen S., “Likelihood degenerations”, Adv. Math., 414 (2023), 108863, 39 pp., arXiv: 2107.10518 | DOI | MR
[3] Arkani-Hamed N., Bai Y., He S., Yan G., “Scattering forms and the positive geometry of kinematics, color and the worldsheet”, J. High Energy Phys., 2018:5 (2018), 096, 76 pp., arXiv: 1711.09102 | DOI | MR
[4] Arkani-Hamed N., Bourjaily J., Cachazo F., Goncharov A., Postnikov A., Trnka J., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[5] Arkani-Hamed N., He S., Lam T., “Stringy canonical forms”, J. High Energy Phys., 2021:2 (2021), 069, 59 pp., arXiv: 1912.08707 | DOI | MR
[6] Arkani-Hamed N., Lam T., Spradlin M., “Non-perturbative geometries for planar $\mathcal N = 4$ SYM amplitudes”, J. High Energy Phys., 2021:3 (2021), 065, 14 pp., arXiv: 1912.08222 | DOI | MR
[7] Arkani-Hamed N., Lam T., Spradlin M., “Positive configuration space”, Comm. Math. Phys., 384 (2021), 909–954, arXiv: 2003.03904 | DOI | MR | Zbl
[8] Bendle D., Böhm J., Ren Y., Schröter B., “Massively parallel computation of tropical varieties, their positive part, and tropical Grassmannians”, J. Symbolic Comput., 120 (2024), 102224, 28 pp. | DOI | MR
[9] Bern Z., Carrasco J.J., The duality between color and kinematics and its applications, arXiv: 1909.01358
[10] Bern Z., Carrasco J.J., Chiodaroli M., Johansson H., Roiban R., “The SAGEX review on scattering amplitudes. Chapter 2: An invitation to color-kinematics duality and the double copy”, J. Phys. A, 55 (2022), 443003, 37 pp., arXiv: 2203.13013 | DOI | MR | Zbl
[11] Bern Z., Carrasco J.J.M., Johansson H., “New relations for gauge-theory amplitudes”, Phys. Rev. D, 78 (2008), 085011, 19 pp., arXiv: 0805.3993 | DOI | MR
[12] Björner A., Las Vergnas M., Sturmfels B., White N., Ziegler G.M., Oriented matroids, Encyclopedia Math. Appl., 46, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[13] Borges F., Cachazo F., “Generalized planar Feynman diagrams: collections”, J. High Energy Phys., 2020:11 (2020), 164, 27 pp., arXiv: 1910.10674 | DOI | MR | Zbl
[14] Cachazo F., Early N., “Biadjoint scalars and associahedra from residues of generalized amplitudes”, J. High Energy Phys., 2023:10 (2023), 015, 26 pp., arXiv: 2204.01743 | DOI | MR
[15] Cachazo F., Early N., Guevara A., Mizera S., “Scattering equations: from projective spaces to tropical Grassmannians”, J. High Energy Phys., 2019:6 (2019), 039, 32 pp., arXiv: 1903.08904 | DOI | MR
[16] Cachazo F., Early N., Zhang Y., Generalized color orderings: CEGM integrands and decoupling identities, arXiv: 2304.07351
[17] Cachazo F., Guevara A., Umbert B., Zhang Y., Planar matrices and arrays of Feynman diagrams, arXiv: 1912.09422
[18] Cachazo F., He S., Yuan E.Y., “Scattering of massless particles in arbitrary dimensions”, Phys. Rev. Lett., 1013 (2014), 171601, 4 pp., arXiv: 1307.2199 | DOI
[19] Cachazo F., He S., Yuan E.Y., “Scattering of massless particles: scalars, gluons and gravitons”, J. High Energy Phys., 2014:7 (2014), 033, 33 pp., arXiv: 1309.0885 | DOI | MR
[20] Celaya M., Loho G., Yuen C.H., Oriented matroids from triangulations of products of simplices, arXiv: 2005.01787
[21] Dolan L., Goddard P., “The polynomial form of the scattering equations”, J. High Energy Phys., 2014:7 (2014), 029, 23 pp., arXiv: 1402.7374 | DOI | MR | Zbl
[22] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Tropical Grassmannians, cluster algebras and scattering amplitudes”, J. High Energy Phys., 2020:4 (2020), 146, 22 pp., arXiv: 1907.01053 | DOI | MR | Zbl
[23] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Tropical fans, scattering equations and amplitudes”, J. High Energy Phys., 2021:11 (2021), 071, 26 pp., arXiv: 2002.04624 | DOI | MR
[24] Early N., Factorization for generalized biadjoint scalar amplitudes via matroid subdivisions, arXiv: 2211.16623
[25] Early N., “From weakly separated collections to matroid subdivisions”, Comb. Theory, 2:2 (2022), 2, 35 pp., arXiv: 1910.11522 | DOI | MR | Zbl
[26] Early N., Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams, arXiv: 1912.13513
[27] Early N., Moduli space tilings and Lie-theoretic color factors, arXiv: 2310.12130
[28] Fukuda K., Miyata H., Moriyama S., “Complete enumeration of small realizable oriented matroids”, Discrete Comput. Geom., 49 (2013), 359–381, arXiv: 1204.0645 | DOI | MR | Zbl
[29] Gao X., He S., Zhang Y., “Labelled tree graphs, Feynman diagrams and disk integrals”, J. High Energy Phys., 2017:11 (2017), 144, 38 pp., arXiv: 1708.08701 | DOI | MR
[30] Gates Jr. S.J., Mak S.N.H., Spradlin M., Volovich A., Cluster superalgebras and stringy integrals, arXiv: 2111.08186
[31] Guevara A., Zhang Y., Planar matrices and arrays of Feynman diagrams: poles for higher $k$, arXiv: 2007.15679
[32] He S., Hou L., Tian J., Zhang Y., “Kinematic numerators from the worldsheet: cubic trees from labelled trees”, J. High Energy Phys., 2021:8 (2021), 118, 23 pp., arXiv: 2103.15810 | DOI | MR
[33] He S., Ren L., Zhang Y., “Notes on polytopes, amplitudes and boundary configurations for Grassmannian string integrals”, J. High Energy Phys., 2020:4 (2020), 140, 37 pp., arXiv: 2001.09603 | DOI | MR
[34] He S., Wang Y., Zhang Y., Zhao P., “Notes on worldsheet-like variables for cluster configuration spaces”, SIGMA, 19 (2023), 045, 24 pp., arXiv: 2109.13900 | DOI | MR
[35] He S., Yan G., Zhang C., Zhang Y., “Scattering forms, worldsheet forms and amplitudes from subspaces”, J. High Energy Phys., 2018:8 (2018), 040, 32 pp., arXiv: 1803.11302 | DOI | MR
[36] Henke N., Papathanasiou G., “Singularities of eight- and nine-particle amplitudes from cluster algebras and tropical geometry”, J. High Energy Phys., 2021:10 (2021), 007, 60 pp., arXiv: 2106.01392 | DOI | MR
[37] Herderschee A., He S., Teng F., Zhang Y., “On positive geometry and scattering forms for matter particles”, J. High Energy Phys., 2020:6 (2020), 030, 44 pp., arXiv: 1912.08307 | DOI | MR
[38] Herrmann S., Jensen A., Joswig M., Sturmfels B., “How to draw tropical planes”, Electron. J. Combin., 16:2 (2009), 6, 26 pp., arXiv: 0808.2383 | DOI | MR
[39] Lukowski T., Parisi M., Williams L.K., “The positive tropical Grassmannian, the hypersimplex, and the $m=2$ amplituhedron”, Int. Math. Res. Not., 2023 (2023), 16778–16836, arXiv: 2002.06164 | DOI | MR
[40] Mafra C.R., “Berends-Giele recursion for double-color-ordered amplitudes”, J. High Energy Phys., 2016:7 (2016), 080, 15 pp., arXiv: 1603.09731 | DOI | MR
[41] Mangano M.L., Parke S.J., “Multiparton amplitudes in gauge theories”, Phys. Rep., 200 (1991), 301–367, arXiv: hep-th/0509223 | DOI
[42] Pachter L., Sturmfels B., “Tropical geometry of statistical models”, Proc. Natl. Acad. Sci., 101 (2004), 16132–16137, arXiv: q-bio/0311009 | DOI | MR | Zbl
[43] Postnikov A., Total positivity, Grassmannians, and networks, arXiv: math.CO/0609764
[44] Sekiguchi J., “Configurations of seven lines on the real projective plane and the root system of type $E_7$”, J. Math. Soc. Japan, 51 (1999), 987–1013 | DOI | MR | Zbl
[45] Skorobogatov A.N., “On the number of representations of matroids over finite fields”, Des. Codes Cryptogr., 9 (1996), 215–226 | DOI | MR | Zbl
[46] Speyer D., Sturmfels B., “The tropical Grassmannian”, Adv. Geom., 4 (2004), 389–411, arXiv: math.AG/0304218 | DOI | MR | Zbl
[47] Speyer D., Williams L., “The tropical totally positive Grassmannian”, J. Algebraic Combin., 22 (2005), 189–210, arXiv: math.CO/0312297 | DOI | MR | Zbl
[48] Speyer D., Williams L.K., “The positive Dressian equals the positive tropical Grassmannian”, Trans. Amer. Math. Soc. Ser. B, 8 (2021), 330–353, arXiv: 2003.10231 | DOI | MR | Zbl
[49] Speyer D.E., “A matroid invariant via the $K$-theory of the Grassmannian”, Adv. Math., 221 (2009), 882–913, arXiv: math.AG/0603551 | DOI | MR | Zbl
[50] Yoshida M., Hypergeometric functions, my love. Modular interpretations of configuration spaces, Asp. Math., 32, Friedr. Vieweg Sohn, Braunschweig, 1997 | DOI | MR