Mots-clés : superposition formulae, sine-Gordon equation, elliptic sine-Gordon
@article{SIGMA_2024_20_a14,
author = {Filipe Kelmer and Keti Tenenblat},
title = {Superposition {Formulae} for the {Geometric} {B\"acklund} {Transformations} of the {Hyperbolic} and {Elliptic} {Sine-Gordon} and {Sinh-Gordon} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a14/}
}
TY - JOUR AU - Filipe Kelmer AU - Keti Tenenblat TI - Superposition Formulae for the Geometric Bäcklund Transformations of the Hyperbolic and Elliptic Sine-Gordon and Sinh-Gordon Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a14/ LA - en ID - SIGMA_2024_20_a14 ER -
%0 Journal Article %A Filipe Kelmer %A Keti Tenenblat %T Superposition Formulae for the Geometric Bäcklund Transformations of the Hyperbolic and Elliptic Sine-Gordon and Sinh-Gordon Equations %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a14/ %G en %F SIGMA_2024_20_a14
Filipe Kelmer; Keti Tenenblat. Superposition Formulae for the Geometric Bäcklund Transformations of the Hyperbolic and Elliptic Sine-Gordon and Sinh-Gordon Equations. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a14/
[1] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31 (1973), 125–127 | DOI | MR | Zbl
[2] Bäcklund A.V., “Einiges über Curve und Flächentransformationen”, Lund. Univ. Årsskr., 10 (1874), 1–12 | MR
[3] Bäcklund A.V., Concerning surfaces with constant negative curvature, New Era Printing Co., Lancaster, 1905
[4] Barbosa J.L., Ferreira W., Tenenblat K., “Submanifolds of constant sectional curvature in pseudo-Riemannian manifolds”, Ann. Global Anal. Geom., 14 (1996), 381–401 | DOI | MR | Zbl
[5] Beals R., Tenenblat K., “An intrinsic generalization for the wave and sine-Gordon equations”, Differential Geometry, Pitman Monogr. Surveys Pure Appl. Math., 52, Longman Scientific Technical, Harlow, 1991, 25–46 | MR
[6] Bianchi L., “Sulla transformazione di Bäcklund per le superficie pseudosferiche”, Rend. Acc. Naz. Lincei, 1 (1892), 3–13
[7] Campos P.T., “Bäcklund transformations for the generalized Laplace and elliptic sinh-Gordon equations”, An. Acad. Bras. Ciênc., 66 (1994), 405–411 | Zbl
[8] Campos P.T., Tenenblat K., “Bäcklund transformations for a class of systems of differential equations”, Geom. Funct. Anal., 4 (1994), 270–287 | DOI | MR | Zbl
[9] Chen Q., Zuo D., Cheng Y., “Isometric immersions of pseudo-Riemannian space forms”, J. Geom. Phys., 52 (2004), 241–262 | DOI | MR | Zbl
[10] Clelland J.N., “Totally quasi-umbilic timelike surfaces in ${\mathbb R}^{1,2}$”, Asian J. Math., 16 (2012), 189–208, arXiv: 1006.4380 | DOI | MR | Zbl
[11] Dajczer M., Tojeiro R., “Isometric immersions and the generalized Laplace and elliptic sinh-Gordon equations”, J. Reine Angew. Math., 467 (1995), 109–147 | DOI | MR | Zbl
[12] Fokas A.S., Lenells J., Pelloni B., “Boundary value problems for the elliptic sine-Gordon equation in a semi-strip”, J. Nonlinear Sci., 23 (2013), 241–282, arXiv: 0912.1758 | DOI | MR | Zbl
[13] Gu C.H., Hu H.S., Inoguchi J.-I., “On time-like surfaces of positive constant Gaussian curvature and imaginary principal curvatures”, J. Geom. Phys., 41 (2002), 296–311 | DOI | MR | Zbl
[14] Gutshabash E.S., Lipovskii V.D., “A boundary value problem for a two-dimensional elliptic sine-Gordon equation and its application to the theory of the stationary Josephson effect”, J. Math. Sci., 68 (1994), 197–201 | DOI | MR
[15] Jaworski M., Kaup D., “Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation”, Inverse Problems, 6 (1990), 543–556 | DOI | MR | Zbl
[16] Kelmer F., Rodrigues L.A., Tenenblat K., “A unified approach to Bäcklund type theorems for surfaces in 3-dimensional pseudo-euclidean space”, Mat. Contemp., 49 (2022), 140–170 | DOI | MR
[17] McNertney L.V., One-parameter families of surfaces with constant curvature in Lorentz 3-space, Ph.D. Thesis, Brown University, 1980 | MR
[18] Palmer B., “Bäcklund transformations for surfaces in Minkowski space”, J. Math. Phys., 31 (1990), 2872–2875 | DOI | MR | Zbl
[19] Pelloni B., “Spectral analysis of the elliptic sine-Gordon equation in the quarter plane”, Theoret. and Math. Phys., 160 (2009), 1031–1041 | DOI | MR | Zbl
[20] Tenenblat K., “Bäcklund's theorem for submanifolds of space forms and a generalized wave equation”, Bol. Soc. Brasil. Mat., 16 (1985), 69–94 | DOI | MR
[21] Tenenblat K., Transformations of manifolds and applications to differential equations, Pitman Monogr. and Surv. in Pure and Appl. Math., 93, Longman, Harlow, 1998 | MR | Zbl
[22] Tenenblat K., Terng C.L., “Bäcklund's theorem for $n$-dimensional submanifolds of ${\mathbf R}^{2n-1}$”, Ann. of Math., 111 (1980), 477–490 | DOI | MR | Zbl
[23] Terng C.L., “A higher dimension generalization of the sine-Gordon equation and its soliton theory”, Ann. of Math., 111 (1980), 491–510 | DOI | MR | Zbl
[24] Tian C., “Bäcklund transformation on surfaces with $K=-1$ in ${\mathbb R}^{2,1}$”, J. Geom. Phys., 22 (1997), 212–218 | DOI | MR | Zbl