On the Higher-Rank Askey–Wilson Algebras
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the algebra $\mathscr{A}(n)$, which is generated by an upper triangular generating matrix with triple relations, is introduced. It is shown that there exists an isomorphism between the algebra $\mathscr{A}(n)$ and the higher-rank Askey–Wilson algebra $\mathfrak{aw}(n)$ introduced by Crampé et al. Furthermore, we establish a series of automorphisms of $\mathscr{A}(n)$, which satisfy braid group relations and coincide with those in $\mathfrak{aw}(n)$.
Keywords: Askey–Wilson algebra, braid group.
@article{SIGMA_2024_20_a114,
     author = {Wanxia Wang and Shilin Yang},
     title = {On the {Higher-Rank} {Askey{\textendash}Wilson} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a114/}
}
TY  - JOUR
AU  - Wanxia Wang
AU  - Shilin Yang
TI  - On the Higher-Rank Askey–Wilson Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a114/
LA  - en
ID  - SIGMA_2024_20_a114
ER  - 
%0 Journal Article
%A Wanxia Wang
%A Shilin Yang
%T On the Higher-Rank Askey–Wilson Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a114/
%G en
%F SIGMA_2024_20_a114
Wanxia Wang; Shilin Yang. On the Higher-Rank Askey–Wilson Algebras. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a114/

[1] Baseilhac P., Koizumi K., “A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain”, J. Stat. Mech. Theory Exp., 2005 (2005), P10005, 15 pp. | DOI | MR | Zbl

[2] Cooke J., Lacabanne A., Higher rank Askey–Wilson algebras as skein algebras, arXiv: 2205.04414

[3] Crampé N., Frappat L., Gaboriaud J., d'Andecy L.P., Ragoucy E., Vinet L., “The Askey–Wilson algebra and its avatars”, J. Phys. A, 54 (2021), 063001, 32 pp., arXiv: 2009.14815 | DOI | MR | Zbl

[4] Crampé N., Frappat L., Poulain d'Andecy L., Ragoucy E., “The higher-rank Askey–Wilson algebra and its braid group automorphisms”, SIGMA, 19 (2023), 077, 36 pp., arXiv: 2303.17677 | DOI | MR | Zbl

[5] Crampé N., Gaboriaud J., Vinet L., Zaimi M., “Revisiting the Askey–Wilson algebra with the universal $R$-matrix of $\mathrm{U}_q(\mathfrak{sl}_2)$”, J. Phys. A, 53 (2020), 05LT01, 10 pp., arXiv: 1908.04806 | DOI | MR | Zbl

[6] Crampé N., Vinet L., Zaimi M., “Temperley–Lieb, Birman–Murakami–Wenzl and Askey–Wilson algebras and other centralizers of $U_q(\mathfrak{sl}_2)$”, Ann. Henri Poincaré, 22 (2021), 3499–3528, arXiv: 2008.04905 | DOI | MR | Zbl

[7] De Bie H., De Clercq H., van de Vijver W., “The higher rank $q$-deformed Bannai–Ito and Askey–Wilson algebra”, Comm. Math. Phys., 374 (2020), 277–316, arXiv: 1805.06642 | DOI | MR | Zbl

[8] De Bie H., van de Vijver W., “A discrete realization of the higher rank Racah algebra”, Constr. Approx., 52 (2020), 1–29, arXiv: 1808.10520 | DOI | MR | Zbl

[9] De Clercq H., “Higher rank relations for the Askey–Wilson and $q$-Bannai–Ito algebra”, SIGMA, 15 (2019), 099, 32 pp., arXiv: 1908.11654 | DOI | MR | Zbl

[10] Groenevelt W., Wagenaar C., “An Askey–Wilson algebra of rank 2”, SIGMA, 19 (2023), 008, 35 pp., arXiv: 2206.03986 | DOI | MR | Zbl

[11] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra”, Comm. Math. Phys., 340 (2015), 959–984, arXiv: 1210.1740 | DOI | MR | Zbl

[12] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra at roots of unity”, J. Algebra, 569 (2021), 12–29, arXiv: 1906.01776 | DOI | MR | Zbl

[13] Koelink E., Stokman J.V., “The Askey–Wilson function transform”, Internat. Math. Res. Notices, 2001 (2001), 1203–1227, arXiv: math.CA/0004053 | DOI | MR | Zbl

[14] Koornwinder T.H., “The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl

[15] Koornwinder T.H., “Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl

[16] Lavrenov A., “On Askey–Wilson algebra”, Czechoslovak J. Phys., 47 (1997), 1213–1219 | DOI | MR | Zbl

[17] Post S., Walter A., A higher rank extension of the Askey–Wilson algebra, arXiv: 1705.01860

[18] Terwilliger P., “The universal Askey–Wilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl

[19] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl

[20] Zhedanov A.S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl