@article{SIGMA_2024_20_a114,
author = {Wanxia Wang and Shilin Yang},
title = {On the {Higher-Rank} {Askey{\textendash}Wilson} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a114/}
}
Wanxia Wang; Shilin Yang. On the Higher-Rank Askey–Wilson Algebras. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a114/
[1] Baseilhac P., Koizumi K., “A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain”, J. Stat. Mech. Theory Exp., 2005 (2005), P10005, 15 pp. | DOI | MR | Zbl
[2] Cooke J., Lacabanne A., Higher rank Askey–Wilson algebras as skein algebras, arXiv: 2205.04414
[3] Crampé N., Frappat L., Gaboriaud J., d'Andecy L.P., Ragoucy E., Vinet L., “The Askey–Wilson algebra and its avatars”, J. Phys. A, 54 (2021), 063001, 32 pp., arXiv: 2009.14815 | DOI | MR | Zbl
[4] Crampé N., Frappat L., Poulain d'Andecy L., Ragoucy E., “The higher-rank Askey–Wilson algebra and its braid group automorphisms”, SIGMA, 19 (2023), 077, 36 pp., arXiv: 2303.17677 | DOI | MR | Zbl
[5] Crampé N., Gaboriaud J., Vinet L., Zaimi M., “Revisiting the Askey–Wilson algebra with the universal $R$-matrix of $\mathrm{U}_q(\mathfrak{sl}_2)$”, J. Phys. A, 53 (2020), 05LT01, 10 pp., arXiv: 1908.04806 | DOI | MR | Zbl
[6] Crampé N., Vinet L., Zaimi M., “Temperley–Lieb, Birman–Murakami–Wenzl and Askey–Wilson algebras and other centralizers of $U_q(\mathfrak{sl}_2)$”, Ann. Henri Poincaré, 22 (2021), 3499–3528, arXiv: 2008.04905 | DOI | MR | Zbl
[7] De Bie H., De Clercq H., van de Vijver W., “The higher rank $q$-deformed Bannai–Ito and Askey–Wilson algebra”, Comm. Math. Phys., 374 (2020), 277–316, arXiv: 1805.06642 | DOI | MR | Zbl
[8] De Bie H., van de Vijver W., “A discrete realization of the higher rank Racah algebra”, Constr. Approx., 52 (2020), 1–29, arXiv: 1808.10520 | DOI | MR | Zbl
[9] De Clercq H., “Higher rank relations for the Askey–Wilson and $q$-Bannai–Ito algebra”, SIGMA, 15 (2019), 099, 32 pp., arXiv: 1908.11654 | DOI | MR | Zbl
[10] Groenevelt W., Wagenaar C., “An Askey–Wilson algebra of rank 2”, SIGMA, 19 (2023), 008, 35 pp., arXiv: 2206.03986 | DOI | MR | Zbl
[11] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra”, Comm. Math. Phys., 340 (2015), 959–984, arXiv: 1210.1740 | DOI | MR | Zbl
[12] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra at roots of unity”, J. Algebra, 569 (2021), 12–29, arXiv: 1906.01776 | DOI | MR | Zbl
[13] Koelink E., Stokman J.V., “The Askey–Wilson function transform”, Internat. Math. Res. Notices, 2001 (2001), 1203–1227, arXiv: math.CA/0004053 | DOI | MR | Zbl
[14] Koornwinder T.H., “The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl
[15] Koornwinder T.H., “Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II The spherical subalgebra”, SIGMA, 4 (2008), 052, 17 pp., arXiv: 0711.2320 | DOI | MR | Zbl
[16] Lavrenov A., “On Askey–Wilson algebra”, Czechoslovak J. Phys., 47 (1997), 1213–1219 | DOI | MR | Zbl
[17] Post S., Walter A., A higher rank extension of the Askey–Wilson algebra, arXiv: 1705.01860
[18] Terwilliger P., “The universal Askey–Wilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl
[19] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[20] Zhedanov A.S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl