Mots-clés : tetrahedron equation
@article{SIGMA_2024_20_a112,
author = {Rei Inoue and Atsuo Kuniba and Xiaoyue Sun and Yuji Terashima and Junya Yagi},
title = {Solutions of {Tetrahedron} {Equation} from {Quantum} {Cluster} {Algebra} {Associatedwith} {Symmetric} {Butterfly} {Quiver}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a112/}
}
TY - JOUR AU - Rei Inoue AU - Atsuo Kuniba AU - Xiaoyue Sun AU - Yuji Terashima AU - Junya Yagi TI - Solutions of Tetrahedron Equation from Quantum Cluster Algebra Associatedwith Symmetric Butterfly Quiver JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a112/ LA - en ID - SIGMA_2024_20_a112 ER -
%0 Journal Article %A Rei Inoue %A Atsuo Kuniba %A Xiaoyue Sun %A Yuji Terashima %A Junya Yagi %T Solutions of Tetrahedron Equation from Quantum Cluster Algebra Associatedwith Symmetric Butterfly Quiver %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a112/ %G en %F SIGMA_2024_20_a112
Rei Inoue; Atsuo Kuniba; Xiaoyue Sun; Yuji Terashima; Junya Yagi. Solutions of Tetrahedron Equation from Quantum Cluster Algebra Associatedwith Symmetric Butterfly Quiver. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a112/
[1] Baxter R.J., Exactly solved models in statistical mechanics, Academic Press, London, 1982 | MR | Zbl
[2] Bazhanov V.V., Mangazeev V.V., Sergeev S.M., “Quantum geometry of 3-dimensional lattices and tetrahedron equation”, XVIth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2010, 23–44, arXiv: 0911.3693 | DOI | MR | Zbl
[3] Bazhanov V.V., Sergeev S.M., “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A, 39 (2006), 3295–3310, arXiv: hep-th/0509181 | DOI | MR | Zbl
[4] Faddeev L.D., Kashaev R.M., Volkov A.Yu., “Strongly coupled quantum discrete Liouville theory. I Algebraic approach and duality”, Comm. Math. Phys., 219 (2001), 199–219, arXiv: hep-th/0006156 | DOI | MR | Zbl
[5] Fock V.V., Goncharov A.B., “Cluster $\mathcal{X}$-varieties, amalgamation, and Poisson–Lie groups”, Algebraic Geometry and Number Theory, Progr. Math., 253, Birkhäuser Boston, Boston, MA, 2006, 27–68, arXiv: math.RT/0508408 | DOI | MR | Zbl
[6] Fock V.V., Goncharov A.B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[7] Fock V.V., Goncharov A.B., “The quantum dilogarithm and representations of quantum cluster varieties”, Invent. Math., 175 (2009), 223–286, arXiv: math.QA/0702397 | DOI | MR | Zbl
[8] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[9] Gavrylenko P., Semenyakin M., Zenkevich Y., “Solution of tetrahedron equation and cluster algebras”, J. High Energy Phys., 2021:5 (2021), 103, 33 pp., arXiv: 2010.15871 | DOI | MR | Zbl
[10] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[11] Inoue R., Kuniba A., Terashima Y., “Quantum cluster algebras and 3D integrability: tetrahedron and 3D reflection equations”, Int. Math. Res. Not., 2024 (2024), 11549–11581, arXiv: 2310.14493 | DOI | MR | Zbl
[12] Inoue R., Kuniba A., Terashima Y., “Tetrahedron equation and quantum cluster algebras”, J. Phys. A, 57 (2024), 085202, 33 pp., arXiv: 2310.14529 | DOI | MR | Zbl
[13] Isaev A.P., Kulish P.P., “Tetrahedron reflection equations”, Modern Phys. Lett. A, 12 (1997), 427–437, arXiv: hep-th/9702013 | DOI | MR | Zbl
[14] Kapranov M.M., Voevodsky V.A., “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, Proc. Sympos. Pure Math., 56, American Mathematical Society, Providence, RI, 1994, 177–259 | DOI | MR | Zbl
[15] Kashaev R.M., Nakanishi T., “Classical and quantum dilogarithm identities”, SIGMA, 7 (2011), 102, 29 pp., arXiv: 1104.4630 | DOI | MR | Zbl
[16] Keller B., “On cluster theory and quantum dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 85–116, arXiv: 1102.4148 | DOI | MR | Zbl
[17] Kuniba A., Quantum groups in three-dimensional integrability, Theoret. and Math. Phys., Springer, Singapore, 2022 | DOI | MR | Zbl
[18] Kuniba A., Matsuike S., Yoneyama A., “New solutions to the tetrahedron equation associated with quantized six-vertex models”, Comm. Math. Phys., 401 (2023), 3247–3276, arXiv: 2208.10258 | DOI | MR | Zbl
[19] Nakanishi T., “Periodicities in cluster algebras and dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 407–443, arXiv: 1006.0632 | DOI | MR | Zbl
[20] Nakanishi T., “Synchronicity phenomenon in cluster patterns”, J. Lond. Math. Soc., 103 (2021), 1120–1152, arXiv: 1906.12036 | DOI | MR | Zbl
[21] Sergeev S.M., Arithmetic of quantum integrable systems in multidimensional discrete space-time, Unpublished note, 2010
[22] Sergeev S.M., “Quantum $2+1$ evolution model”, J. Phys. A, 32 (1999), 5693–5714, arXiv: solv-int/9811003 | DOI | MR | Zbl
[23] Sun X., Yagi J., “Cluster transformations, the tetrahedron equation and three-dimensional gauge theories”, Adv. Theor. Math. Phys., 27 (2023), 1065–1106, arXiv: 2211.10702 | DOI | MR | Zbl
[24] Zamolodchikov A.B., “Tetrahedra equations and integrable systems in three-dimensional space”, Soviet Phys. JETP, 79 (1980), 325–336 | MR