Mots-clés : Painlevé equations.
@article{SIGMA_2024_20_a111,
author = {Tom Bridgeland},
title = {Tau {Functions} from {Joyce} {Structures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a111/}
}
Tom Bridgeland. Tau Functions from Joyce Structures. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a111/
[1] Alexandrov S., Manschot J., Persson D., Pioline B., “Quantum hypermultiplet moduli spaces in ${\mathcal N}=2$ string vacua: a review”, String-Math 2012, Proc. Sympos. Pure Math., 90, American Mathematical Society, Providence, RI, 2015, 181–211, arXiv: 1304.0766 | DOI | MR | Zbl
[2] Alexandrov S., Persson D., Pioline B., “Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence”, J. High Energy Phys., 2011, no. 027 (2011), 64 pp., arXiv: 1110.0466 | DOI | MR
[3] Allegretti D.G.L., Bridgeland T., “The monodromy of meromorphic projective structures”, Trans. Amer. Math. Soc., 373 (2020), 6321–6367, arXiv: 1802.02505 | DOI | MR | Zbl
[4] Bailey T.N., Eastwood M.G., “Complex paraconformal manifolds – their differential geometry and twistor theory”, Forum Math., 3 (1991), 61–103 | DOI | MR | Zbl
[5] Bertola M., Korotkin D., “Tau-functions and monodromy symplectomorphisms”, Comm. Math. Phys., 388 (2021), 245–290, arXiv: 1910.03370 | DOI | MR | Zbl
[6] Bonahon F., “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math., 5 (1996), 233–297 | DOI | MR | Zbl
[7] Bonelli G., Grassi A., Tanzini A., “Seiberg–Witten theory as a Fermi gas”, Lett. Math. Phys., 107 (2017), 1–30, arXiv: 1603.01174 | DOI | MR | Zbl
[8] Bonelli G., Grassi A., Tanzini A., “New results in ${\mathcal N}=2$ theories from non-perturbative string”, Ann. Henri Poincaré, 19 (2018), 743–774, arXiv: 1704.01517 | DOI | MR | Zbl
[9] Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., “On Painlevé/gauge theory correspondence”, Lett. Math. Phys., 107 (2017), 2359–2413, arXiv: 1612.06235 | DOI | MR | Zbl
[10] Bridgeland T., “Riemann–Hilbert problems from Donaldson–Thomas theory”, Invent. Math., 216 (2019), 69–124, arXiv: 1611.03697 | DOI | MR | Zbl
[11] Bridgeland T., “Riemann–Hilbert problems for the resolved conifold”, J. Differential Geom., 115 (2020), 395–435, arXiv: 1703.02776 | DOI | MR | Zbl
[12] Bridgeland T., “Geometry from Donaldson–Thomas invariants”, Integrability, Quantization, and Geometry II Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 103, American Mathematical Society, Providence, RI, 2021, 1–66, arXiv: 1912.06504 | DOI | MR | Zbl
[13] Bridgeland T., “Joyce structures on spaces of quadratic differentials”, Geom. Topol. (to appear) , arXiv: 2203.17148
[14] Bridgeland T., Joyce structures and their twistor spaces, arXiv: 2407.18229
[15] Bridgeland T., Masoero D., “On the monodromy of the deformed cubic oscillator”, Math. Ann., 385 (2023), 193–258, arXiv: 2006.10648 | DOI | MR | Zbl
[16] Bridgeland T., Smith I., “Quadratic differentials as stability conditions”, Publ. Math. Inst. Hautes Études Sci., 121 (2015), 155–278, arXiv: 1302.7030 | DOI | MR | Zbl
[17] Bridgeland T., Strachan I.A.B., “Complex hyperkähler structures defined by Donaldson–Thomas invariants”, Lett. Math. Phys., 111 (2021), 54, 24 pp., arXiv: 2006.13059 | DOI | MR | Zbl
[18] Chakravarty S., Mason L., Newman E.T., “Canonical structures on anti-self-dual four-manifolds and the diffeomorphism group”, J. Math. Phys., 32 (1991), 1458–1464 | DOI | MR | Zbl
[19] Coman I., Pomoni E., Teschner J., “From quantum curves to topological string partition functions”, Comm. Math. Phys., 399 (2023), 1501–1548, arXiv: 1811.01978 | DOI | MR | Zbl
[20] Coman I., Pomoni E., Teschner J., From quantum curves to topological string partition functions II, arXiv: 2004.04585
[21] Dunajski M., Mason L.J., “Hyper-Kähler hierarchies and their twistor theory”, Comm. Math. Phys., 213 (2000), 641–672, arXiv: math.DG/0001008 | DOI | MR | Zbl
[22] Dunajski M., Moy T., “Heavenly metrics, hyper-Lagrangians and Joyce structures”, J. Lond. Math. Soc., 110 (2024), e13009, 42 pp., arXiv: 2402.14352 | DOI | MR | Zbl
[23] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 103 (2006), 1–211, arXiv: math.AG/0311149 | DOI | MR | Zbl
[24] Fock V., Goncharov A., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér., 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[25] Gaiotto D., Moore G.W., Neitzke A., “Wall-crossing, Hitchin systems, and the WKB approximation”, Adv. Math., 234 (2013), 239–403, arXiv: 0907.3987 | DOI | MR | Zbl
[26] Haiden F., “3-D Calabi–Yau categories for Teichmüller theory”, Duke Math. J., 173 (2024), 277–346, arXiv: 2104.06018 | DOI | MR | Zbl
[27] Hitchin N.J., Karlhede A., Lindström U., Roček M., “Hyper-Kähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl
[28] Joyce D., “Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3-folds”, Geom. Topol., 11 (2007), 667–725, arXiv: hep-th/0607039 | DOI | MR | Zbl
[29] Kashaev R.M., Nakanishi T., “Classical and quantum dilogarithm identities”, SIGMA, 7 (2011), 102, 29 pp., arXiv: 1104.4630 | DOI | MR | Zbl
[30] Klemm A., Lerche W., Mayr P., Vafa C., Warner N., “Self-dual strings and $N=2$ supersymmetric field theory”, Nuclear Phys. B, 477 (1996), 746–764, arXiv: hep-th/9604034 | DOI | MR | Zbl
[31] Labardini-Fragoso D., “Quivers with potentials associated to triangulated surfaces”, Proc. Lond. Math. Soc., 98 (2009), 797–839, arXiv: 0803.1328 | DOI | MR | Zbl
[32] Lisovyy O., Roussillon J., “On the connection problem for Painlevé I”, J. Phys. A, 50 (2017), 255202, 15 pp., arXiv: 1612.08382 | DOI | MR | Zbl
[33] Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math., 91, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[34] Nakanishi T., “Periodicities in cluster algebras and dilogarithm identities”, Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2011, 407–443, arXiv: 1006.0632 | DOI | MR | Zbl
[35] Neitzke A., On a hyperholomorphic line bundle over the Coulomb branch, arXiv: 1110.1619
[36] Plebański J., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[37] Smith I., “Quiver algebras as Fukaya categories”, Geom. Topol., 19 (2015), 2557–2617, arXiv: 1309.0452 | DOI | MR | Zbl
[38] Zikidis M., Joyce structures from meromorphic quadratic differentials, in preparation