Harmonic Metrics for Higgs Bundles of Rank 3in the Hitchin Section
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a tuple of holomorphic differentials on a Riemann surface, one can define a Higgs bundle in the Hitchin section and a natural symmetric pairing of the Higgs bundle. We study whether a Higgs bundle of rank 3 in the Hitchin section has a compatible harmonic metric when the spectral curve is a 2-sheeted branched covering of the Riemann surface. In particular, we give a condition for Higgs bundles in the Hitchin section on $\mathbb{C}$ or $\mathbb{C}^*$ to have compatible harmonic metrics.
Keywords: Higgs bundles, Hitchin section, harmonic metrics.
@article{SIGMA_2024_20_a110,
     author = {Hitoshi Fujioka},
     title = {Harmonic {Metrics} for {Higgs} {Bundles} of {Rank} 3in the {Hitchin} {Section}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a110/}
}
TY  - JOUR
AU  - Hitoshi Fujioka
TI  - Harmonic Metrics for Higgs Bundles of Rank 3in the Hitchin Section
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a110/
LA  - en
ID  - SIGMA_2024_20_a110
ER  - 
%0 Journal Article
%A Hitoshi Fujioka
%T Harmonic Metrics for Higgs Bundles of Rank 3in the Hitchin Section
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a110/
%G en
%F SIGMA_2024_20_a110
Hitoshi Fujioka. Harmonic Metrics for Higgs Bundles of Rank 3in the Hitchin Section. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a110/

[1] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl

[2] Hitchin N.J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[3] Hitchin N.J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl

[4] Li Q., Mochizuki T., Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, arXiv: 2010.05401

[5] Li Q., Mochizuki T., “Higgs bundles in the Hitchin section over non-compact hyperbolic surfaces”, Proc. London Math. Soc. (to appear) , arXiv: 2307.03365 | MR

[6] Li Q., Mochizuki T., “Harmonic metrics of generically regular semisimple Higgs bundles on noncompact Riemann surfaces”, Tunis. J. Math., 5 (2023), 663–711, arXiv: 2210.08215 | DOI | MR | Zbl

[7] Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque, 340, 2011, x+607 pp., arXiv: 0803.1344 | MR | Zbl

[8] Simpson C.T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl

[9] Simpson C.T., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl