@article{SIGMA_2024_20_a110,
author = {Hitoshi Fujioka},
title = {Harmonic {Metrics} for {Higgs} {Bundles} of {Rank} 3in the {Hitchin} {Section}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a110/}
}
Hitoshi Fujioka. Harmonic Metrics for Higgs Bundles of Rank 3in the Hitchin Section. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a110/
[1] Biquard O., Boalch P., “Wild non-abelian Hodge theory on curves”, Compos. Math., 140 (2004), 179–204, arXiv: math.DG/0111098 | DOI | MR | Zbl
[2] Hitchin N.J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[3] Hitchin N.J., “Lie groups and Teichmüller space”, Topology, 31 (1992), 449–473 | DOI | MR | Zbl
[4] Li Q., Mochizuki T., Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, arXiv: 2010.05401
[5] Li Q., Mochizuki T., “Higgs bundles in the Hitchin section over non-compact hyperbolic surfaces”, Proc. London Math. Soc. (to appear) , arXiv: 2307.03365 | MR
[6] Li Q., Mochizuki T., “Harmonic metrics of generically regular semisimple Higgs bundles on noncompact Riemann surfaces”, Tunis. J. Math., 5 (2023), 663–711, arXiv: 2210.08215 | DOI | MR | Zbl
[7] Mochizuki T., Wild harmonic bundles and wild pure twistor $D$-modules, Astérisque, 340, 2011, x+607 pp., arXiv: 0803.1344 | MR | Zbl
[8] Simpson C.T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI | MR | Zbl
[9] Simpson C.T., “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc., 3 (1990), 713–770 | DOI | MR | Zbl