Mots-clés : elliptic Calogero model
@article{SIGMA_2024_20_a11,
author = {Alexander V. Turbiner and Juan Carlos Lopez Vieyra and Miguel A. Guadarrama-Ayala},
title = {$\mathfrak{gl}(3)$ {Polynomial} {Integrable} {System:} {Different} {Faces} of the $3${-Body/}${\mathcal A}_2$ {Elliptic} {Calogero} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/}
}
TY - JOUR
AU - Alexander V. Turbiner
AU - Juan Carlos Lopez Vieyra
AU - Miguel A. Guadarrama-Ayala
TI - $\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model
JO - Symmetry, integrability and geometry: methods and applications
PY - 2024
VL - 20
UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/
LA - en
ID - SIGMA_2024_20_a11
ER -
%0 Journal Article
%A Alexander V. Turbiner
%A Juan Carlos Lopez Vieyra
%A Miguel A. Guadarrama-Ayala
%T $\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/
%G en
%F SIGMA_2024_20_a11
Alexander V. Turbiner; Juan Carlos Lopez Vieyra; Miguel A. Guadarrama-Ayala. $\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/
[1] Chryssomalakos C., Turbiner A.V., “Canonical commutation relation preserving maps”, J. Phys. A, 34 (2001), 10475–10485, arXiv: math-ph/0104004 | DOI | MR | Zbl
[2] Lopez Vieyra J.C., Turbiner A.V., Wolfes model aka $G_2/I_6$-rational integrable model: $\mathfrak{g}^{(2)}$, $\mathfrak{g}^{(3)}$ hidden algebras and quartic polynomial algebra of integrals, arXiv: 2310.20481
[3] Olshanetsky M.A., Perelomov A.M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[4] Oshima T., “Completely integrable systems associated with classical root systems”, SIGMA, 3 (2007), 061, 50 pp., arXiv: math-ph/0502028 | DOI | MR | Zbl
[5] Smirnov Yu.F., Turbiner A.V., “Lie algebraic discretization of differential equations”, Modern Phys. Lett. A, 10 (1995), 1795–1802, arXiv: funct-an/9501001 | DOI | MR | Zbl
[6] Sokolov V.V., Turbiner A.V., “Quasi-exact-solvability of the $A_2/G_2$ elliptic model: algebraic forms, $\mathfrak{sl}(3)/\mathfrak{g}^{(2)}$ hidden algebra, polynomial eigenfunctions”, J. Phys. A, 48 (2015), 155201, 15 pp. | DOI | MR | Zbl
[7] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A, 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl
[8] Turbiner A.V., “Lamé equation, $\mathfrak{sl}(2)$ algebra and isospectral deformations”, J. Phys. A, 22 (1989), L1–L3 | DOI | MR | Zbl
[9] Turbiner A.V., “Lie-algebras and linear operators with invariant subspaces”, Lie Algebras, Cohomology, and New Applications to Quantum Mechanics (Springfield, MO, 1992), Contemp. Math., 160, American Mathematical Society, Providence, RI, 1994, 263–310, arXiv: funct-an/9301001 | DOI | MR | Zbl
[10] Turbiner A.V., “Different faces of harmonic oscillator”, SIDE III—Symmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, American Mathematical Society, Providence, RI, 2000, 407–414, arXiv: math-ph/9905006 | DOI | MR | Zbl
[11] Turbiner A.V., “The Heun operator as a Hamiltonian”, J. Phys. A, 49 (2016), 26LT01, 8 pp., arXiv: 1603.02053 | DOI | MR | Zbl
[12] Turbiner A.V., Miller Jr. W., Escobar-Ruiz M.A., “From two-dimensional (super-integrable) quantum dynamics to (super-integrable) three-body dynamics”, J. Phys. A, 54 (2021), 015204, 10 pp., arXiv: 1912.05726 | DOI | MR | Zbl
[13] Turbiner A.V., Vasilevski N., “Poly-analytic functions and representation theory”, Complex Anal. Oper. Theory, 15 (2021), 110, 24 pp., arXiv: 2103.12771 | DOI | MR | Zbl
[14] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl