$\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the $\mathfrak{gl}(3)$ polynomial integrable system, introduced by Sokolov–Turbiner in [J. Phys. A 48 (2015), 155201, 15 pages, arXiv:1409.7439], is equivalent to the $\mathfrak{gl}(3)$ quantum Euler–Arnold top in a constant magnetic field. Their Hamiltonian as well as their third-order integral can be rewritten in terms of $\mathfrak{gl}(3)$ algebra generators. In turn, all these $\mathfrak{gl}(3)$ generators can be represented by the non-linear elements of the universal enveloping algebra of the 5-dimensional Heisenberg algebra $\mathfrak{h}_5(\hat{p}_{1,2},\hat{q}_{1,2}, I)$, thus, the Hamiltonian and integral are two elements of the universal enveloping algebra $U_{\mathfrak{h}_5}$. In this paper, four different representations of the $\mathfrak{h}_5$ Heisenberg algebra are used: (I) by differential operators in two real (complex) variables, (II) by finite-difference operators on uniform or exponential lattices. We discovered the existence of two $2$-parametric bilinear and trilinear elements (denoted $H$ and $I$, respectively) of the universal enveloping algebra $U(\mathfrak{gl}(3))$ such that their Lie bracket (commutator) can be written as a linear superposition of nine so-called artifacts – the special bilinear elements of $U(\mathfrak{gl}(3))$, which vanish once the representation of the $\mathfrak{gl}(3)$-algebra generators is written in terms of the $\mathfrak{h}_5(\hat{p}_{1,2},\hat{q}_{1,2}, I)$-algebra generators. In this representation all nine artifacts vanish, two of the above-mentioned elements of $U(\mathfrak{gl}(3))$ (called the Hamiltonian $H$ and the integral $I$) commute(!); in particular, they become the Hamiltonian and the integral of the $3$-body elliptic Calogero model, if $(\hat{p},\hat{q})$ are written in the standard coordinate-momentum representation. If $(\hat{p},\hat{q})$ are represented by finite-difference/discrete operators on uniform or exponential lattice, the Hamiltonian and the integral of the $3$-body elliptic Calogero model become the isospectral, finite-difference operators on uniform-uniform or exponential-exponential lattices (or mixed) with polynomial coefficients. If $(\hat{p},\hat{q})$ are written in complex $(z, \bar{z})$ variables the Hamiltonian corresponds to a complexification of the $3$-body elliptic Calogero model on ${\mathbb C^2}$.
Keywords: integrable systems, $3$-body systems.
Mots-clés : elliptic Calogero model
@article{SIGMA_2024_20_a11,
     author = {Alexander V. Turbiner and Juan Carlos Lopez Vieyra and Miguel A. Guadarrama-Ayala},
     title = {$\mathfrak{gl}(3)$ {Polynomial} {Integrable} {System:} {Different} {Faces} of the $3${-Body/}${\mathcal A}_2$ {Elliptic} {Calogero} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/}
}
TY  - JOUR
AU  - Alexander V. Turbiner
AU  - Juan Carlos Lopez Vieyra
AU  - Miguel A. Guadarrama-Ayala
TI  - $\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/
LA  - en
ID  - SIGMA_2024_20_a11
ER  - 
%0 Journal Article
%A Alexander V. Turbiner
%A Juan Carlos Lopez Vieyra
%A Miguel A. Guadarrama-Ayala
%T $\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/
%G en
%F SIGMA_2024_20_a11
Alexander V. Turbiner; Juan Carlos Lopez Vieyra; Miguel A. Guadarrama-Ayala. $\mathfrak{gl}(3)$ Polynomial Integrable System: Different Faces of the $3$-Body/${\mathcal A}_2$ Elliptic Calogero Model. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a11/

[1] Chryssomalakos C., Turbiner A.V., “Canonical commutation relation preserving maps”, J. Phys. A, 34 (2001), 10475–10485, arXiv: math-ph/0104004 | DOI | MR | Zbl

[2] Lopez Vieyra J.C., Turbiner A.V., Wolfes model aka $G_2/I_6$-rational integrable model: $\mathfrak{g}^{(2)}$, $\mathfrak{g}^{(3)}$ hidden algebras and quartic polynomial algebra of integrals, arXiv: 2310.20481

[3] Olshanetsky M.A., Perelomov A.M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[4] Oshima T., “Completely integrable systems associated with classical root systems”, SIGMA, 3 (2007), 061, 50 pp., arXiv: math-ph/0502028 | DOI | MR | Zbl

[5] Smirnov Yu.F., Turbiner A.V., “Lie algebraic discretization of differential equations”, Modern Phys. Lett. A, 10 (1995), 1795–1802, arXiv: funct-an/9501001 | DOI | MR | Zbl

[6] Sokolov V.V., Turbiner A.V., “Quasi-exact-solvability of the $A_2/G_2$ elliptic model: algebraic forms, $\mathfrak{sl}(3)/\mathfrak{g}^{(2)}$ hidden algebra, polynomial eigenfunctions”, J. Phys. A, 48 (2015), 155201, 15 pp. | DOI | MR | Zbl

[7] Tremblay F., Turbiner A.V., Winternitz P., “An infinite family of solvable and integrable quantum systems on a plane”, J. Phys. A, 42 (2009), 242001, 10 pp., arXiv: 0904.0738 | DOI | MR | Zbl

[8] Turbiner A.V., “Lamé equation, $\mathfrak{sl}(2)$ algebra and isospectral deformations”, J. Phys. A, 22 (1989), L1–L3 | DOI | MR | Zbl

[9] Turbiner A.V., “Lie-algebras and linear operators with invariant subspaces”, Lie Algebras, Cohomology, and New Applications to Quantum Mechanics (Springfield, MO, 1992), Contemp. Math., 160, American Mathematical Society, Providence, RI, 1994, 263–310, arXiv: funct-an/9301001 | DOI | MR | Zbl

[10] Turbiner A.V., “Different faces of harmonic oscillator”, SIDE III—Symmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, American Mathematical Society, Providence, RI, 2000, 407–414, arXiv: math-ph/9905006 | DOI | MR | Zbl

[11] Turbiner A.V., “The Heun operator as a Hamiltonian”, J. Phys. A, 49 (2016), 26LT01, 8 pp., arXiv: 1603.02053 | DOI | MR | Zbl

[12] Turbiner A.V., Miller Jr. W., Escobar-Ruiz M.A., “From two-dimensional (super-integrable) quantum dynamics to (super-integrable) three-body dynamics”, J. Phys. A, 54 (2021), 015204, 10 pp., arXiv: 1912.05726 | DOI | MR | Zbl

[13] Turbiner A.V., Vasilevski N., “Poly-analytic functions and representation theory”, Complex Anal. Oper. Theory, 15 (2021), 110, 24 pp., arXiv: 2103.12771 | DOI | MR | Zbl

[14] Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Math. Lib., Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl