Mots-clés : Miura transformation, Darboux transformation
@article{SIGMA_2024_20_a109,
author = {Wenjuan Rui and Wenchuang Guan and Yi Yang and Jipeng Cheng},
title = {The {Modified} {Toda} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a109/}
}
Wenjuan Rui; Wenchuang Guan; Yi Yang; Jipeng Cheng. The Modified Toda Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a109/
[1] Adler M., van Moerbeke P., “Vertex operator solutions to the discrete KP-hierarchy”, Comm. Math. Phys., 203 (1999), 185–210, arXiv: solv-int/9912014 | DOI | MR | Zbl
[2] Cheng J., Li M., Tian K., “On the modified KP hierarchy: tau functions, squared eigenfunction symmetries and additional symmetries”, J. Geom. Phys., 134 (2018), 19–37 | DOI | MR | Zbl
[3] Dai H.H., Geng X., “Explicit solutions of the $2+1$-dimensional modified Toda lattice through straightening out of the relativistic Toda flows”, J. Phys. Soc. Japan, 72 (2003), 3063–3069 | DOI | MR | Zbl
[4] Dickey L.A., “Modified KP and discrete KP”, Lett. Math. Phys., 48 (1999), 277–289 | DOI | MR | Zbl
[5] Guan W., Wang S., Rui W., Cheng J., Lax structure and tau function for large BKP hierarchy, arXiv: 2404.09815
[6] Hirota R., The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[7] Jimbo M., Miwa T., “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[8] Kac V.G., van de Leur J.W., “Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions”, Jpn. J. Math., 13 (2018), 235–271, arXiv: 1801.02845 | DOI | MR | Zbl
[9] Kiso K., “A remark on the commuting flows defined by Lax equations”, Progr. Theoret. Phys., 83 (1990), 1108–1114 | DOI | MR | Zbl
[10] Krichever I., Zabrodin A., “Constrained Toda hierarchy and turning points of the Ruijsenaars–Schneider model”, Lett. Math. Phys., 112 (2022), 23, 26 pp., arXiv: 2109.05240 | DOI | MR | Zbl
[11] Krichever I., Zabrodin A., “Toda lattice with constraint of type B”, Phys. D, 453 (2023), 133827, 11 pp., arXiv: 2210.12534 | DOI | MR | Zbl
[12] Kupershmidt B.A., “Mathematics of dispersive water waves”, Comm. Math. Phys., 99 (1985), 51–73 | DOI | MR | Zbl
[13] Kupershmidt B.A., “Canonical property of the Miura maps between the mKP and KP hierarchies, continuous and discrete”, Comm. Math. Phys., 167 (1995), 351–371 | DOI | MR | Zbl
[14] Liu S., Cheng Y., He J., “The determinant representation of the gauge transformation for the discrete KP hierarchy”, Sci. China Math., 53 (2010), 1195–1206, arXiv: 0904.1868 | DOI | MR | Zbl
[15] Liu Y., Yan X., Wang J., Cheng J., “Generalized bigraded Toda hierarchy”, J. Math. Phys., 65 (2024), 103506, arXiv: 2405.19952 | DOI | MR | Zbl
[16] Mikhailov A.V., “Integrability of a two–dimensional generalization of the Toda chain”, JETP Lett., 30 (1979), 414–418 | MR
[17] Mikhailov A.V., Olshanetsky M.A., Perelomov A.M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–488 | DOI | MR
[18] Prokofev V.V., Zabrodin A.V., “Tau-function of the B-Toda hierarchy”, Theoret. Math. Phys., 217 (2023), 1673–1688, arXiv: 2303.17467 | DOI | MR | Zbl
[19] Shaw J.-C., Tu M.-H., “Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies”, J. Math. Phys., 38 (1997), 5756–5773 | DOI | MR | Zbl
[20] Takasaki K., “Toda hierarchies and their applications”, J. Phys. A, 51 (2018), 203001, 35 pp., arXiv: 1801.09924 | DOI | MR | Zbl
[21] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR
[22] van de Leur J.W., Orlov A.Yu., “Pfaffian and determinantal tau functions”, Lett. Math. Phys., 105 (2015), 1499–1531, arXiv: 1404.6076 | DOI | MR | Zbl
[23] Yang Y., Cheng J., “Bilinear equations in Darboux transformations by boson-fermion correspondence”, Phys. D, 433 (2022), 133198, 30 pp., arXiv: 2022.13319 | DOI | MR | Zbl
[24] Zabrodin A.V., “Hirota difference equations”, Theoret. and Math. Phys., 113 (1997), 1347–1392 | DOI | MR
[25] Zakharov V.E., Mikhailov A.V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Sov. Phys. JEPT, 47 (1978), 1017–1027 | MR
[26] Zakharov V.E., Takhtadzhyan L.A., “Equivalence of a nonlinear Schrödinger equation and a Heisenberg ferromagnet equation”, Theoret. and Math. Phys., 38 (1979), 17–23 | DOI | MR