The Modified Toda Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, modified Toda (mToda) equation is generalized to form an integrable hierarchy in the framework of Sato theory, which is therefore called mToda hierarchy. Inspired by the fact that Toda hierarchy is 2-component generalization of usual KP hierarchy, mToda hierarchy is constructed from bilinear equations of 2-component first modified KP hierarchy, where we provide the corresponding equivalence with Lax formulations. Then it is demonstrated that there are Miura links between Toda and mToda hierarchies, which means the definition of mToda hierarchy here is reasonable. Finally, Darboux transformations of the Toda and mToda hierarchies are also constructed by using the aforementioned Miura links.
Keywords: modified Toda hierarchy, Toda hierarchy, tau function.
Mots-clés : Miura transformation, Darboux transformation
@article{SIGMA_2024_20_a109,
     author = {Wenjuan Rui and Wenchuang Guan and Yi Yang and Jipeng Cheng},
     title = {The {Modified} {Toda} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a109/}
}
TY  - JOUR
AU  - Wenjuan Rui
AU  - Wenchuang Guan
AU  - Yi Yang
AU  - Jipeng Cheng
TI  - The Modified Toda Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a109/
LA  - en
ID  - SIGMA_2024_20_a109
ER  - 
%0 Journal Article
%A Wenjuan Rui
%A Wenchuang Guan
%A Yi Yang
%A Jipeng Cheng
%T The Modified Toda Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a109/
%G en
%F SIGMA_2024_20_a109
Wenjuan Rui; Wenchuang Guan; Yi Yang; Jipeng Cheng. The Modified Toda Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a109/

[1] Adler M., van Moerbeke P., “Vertex operator solutions to the discrete KP-hierarchy”, Comm. Math. Phys., 203 (1999), 185–210, arXiv: solv-int/9912014 | DOI | MR | Zbl

[2] Cheng J., Li M., Tian K., “On the modified KP hierarchy: tau functions, squared eigenfunction symmetries and additional symmetries”, J. Geom. Phys., 134 (2018), 19–37 | DOI | MR | Zbl

[3] Dai H.H., Geng X., “Explicit solutions of the $2+1$-dimensional modified Toda lattice through straightening out of the relativistic Toda flows”, J. Phys. Soc. Japan, 72 (2003), 3063–3069 | DOI | MR | Zbl

[4] Dickey L.A., “Modified KP and discrete KP”, Lett. Math. Phys., 48 (1999), 277–289 | DOI | MR | Zbl

[5] Guan W., Wang S., Rui W., Cheng J., Lax structure and tau function for large BKP hierarchy, arXiv: 2404.09815

[6] Hirota R., The direct method in soliton theory, Cambridge Tracts in Math., 155, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[7] Jimbo M., Miwa T., “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl

[8] Kac V.G., van de Leur J.W., “Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions”, Jpn. J. Math., 13 (2018), 235–271, arXiv: 1801.02845 | DOI | MR | Zbl

[9] Kiso K., “A remark on the commuting flows defined by Lax equations”, Progr. Theoret. Phys., 83 (1990), 1108–1114 | DOI | MR | Zbl

[10] Krichever I., Zabrodin A., “Constrained Toda hierarchy and turning points of the Ruijsenaars–Schneider model”, Lett. Math. Phys., 112 (2022), 23, 26 pp., arXiv: 2109.05240 | DOI | MR | Zbl

[11] Krichever I., Zabrodin A., “Toda lattice with constraint of type B”, Phys. D, 453 (2023), 133827, 11 pp., arXiv: 2210.12534 | DOI | MR | Zbl

[12] Kupershmidt B.A., “Mathematics of dispersive water waves”, Comm. Math. Phys., 99 (1985), 51–73 | DOI | MR | Zbl

[13] Kupershmidt B.A., “Canonical property of the Miura maps between the mKP and KP hierarchies, continuous and discrete”, Comm. Math. Phys., 167 (1995), 351–371 | DOI | MR | Zbl

[14] Liu S., Cheng Y., He J., “The determinant representation of the gauge transformation for the discrete KP hierarchy”, Sci. China Math., 53 (2010), 1195–1206, arXiv: 0904.1868 | DOI | MR | Zbl

[15] Liu Y., Yan X., Wang J., Cheng J., “Generalized bigraded Toda hierarchy”, J. Math. Phys., 65 (2024), 103506, arXiv: 2405.19952 | DOI | MR | Zbl

[16] Mikhailov A.V., “Integrability of a two–dimensional generalization of the Toda chain”, JETP Lett., 30 (1979), 414–418 | MR

[17] Mikhailov A.V., Olshanetsky M.A., Perelomov A.M., “Two-dimensional generalized Toda lattice”, Comm. Math. Phys., 79 (1981), 473–488 | DOI | MR

[18] Prokofev V.V., Zabrodin A.V., “Tau-function of the B-Toda hierarchy”, Theoret. Math. Phys., 217 (2023), 1673–1688, arXiv: 2303.17467 | DOI | MR | Zbl

[19] Shaw J.-C., Tu M.-H., “Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies”, J. Math. Phys., 38 (1997), 5756–5773 | DOI | MR | Zbl

[20] Takasaki K., “Toda hierarchies and their applications”, J. Phys. A, 51 (2018), 203001, 35 pp., arXiv: 1801.09924 | DOI | MR | Zbl

[21] Ueno K., Takasaki K., “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., 4, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR

[22] van de Leur J.W., Orlov A.Yu., “Pfaffian and determinantal tau functions”, Lett. Math. Phys., 105 (2015), 1499–1531, arXiv: 1404.6076 | DOI | MR | Zbl

[23] Yang Y., Cheng J., “Bilinear equations in Darboux transformations by boson-fermion correspondence”, Phys. D, 433 (2022), 133198, 30 pp., arXiv: 2022.13319 | DOI | MR | Zbl

[24] Zabrodin A.V., “Hirota difference equations”, Theoret. and Math. Phys., 113 (1997), 1347–1392 | DOI | MR

[25] Zakharov V.E., Mikhailov A.V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Sov. Phys. JEPT, 47 (1978), 1017–1027 | MR

[26] Zakharov V.E., Takhtadzhyan L.A., “Equivalence of a nonlinear Schrödinger equation and a Heisenberg ferromagnet equation”, Theoret. and Math. Phys., 38 (1979), 17–23 | DOI | MR