@article{SIGMA_2024_20_a108,
author = {Georgios Dimitroglou Rizell and Jonathan David Evans},
title = {Lagrangian {Surplusection} {Phenomena}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a108/}
}
Georgios Dimitroglou Rizell; Jonathan David Evans. Lagrangian Surplusection Phenomena. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a108/
[1] Abreu M., Gadbled A., “Toric constructions of monotone Lagrangian submanifolds in $\mathbb{CP}^2$ and $\mathbb{CP}^1\times \mathbb{CP}^1$”, J. Symplectic Geom., 15 (2017), 151–187, arXiv: 1411.6564 | DOI | MR | Zbl
[2] Abreu M., Macarini L., “Remarks on Lagrangian intersections in toric manifolds”, Trans. Amer. Math. Soc., 365 (2013), 3851–3875, arXiv: 1105.0640 | DOI | MR | Zbl
[3] Alston G., “Lagrangian Floer homology of the Clifford torus and real projective space in odd dimensions”, J. Symplectic Geom., 9 (2011), 83–106, arXiv: 0902.0197 | DOI | MR | Zbl
[4] Alston G., Amorim L., “Floer cohomology of torus fibers and real Lagrangians in Fano toric manifolds”, Int. Math. Res. Not., 2012 (2012), 2751–2793, arXiv: 1003.3651 | DOI | MR | Zbl
[5] Arnold V.I., “Singularities of ray systems”, Russian Math. Surveys, 38:2 (1983), 87–176 | DOI | MR | Zbl
[6] Arnold V.I., Topological invariants of plane curves and caustics, Univ. Lecture Ser., 5, American Mathematical Society, Providence, RI, 1994 | DOI | MR | Zbl
[7] Arnold V.I., “Topological problems in the theory of wave propagation”, Russian Math. Surveys, 51:1 (1996), 1–47 | DOI | MR | Zbl
[8] Chekanov Yu., Schlenk F., “Notes on monotone Lagrangian twist tori”, Electron. Res. Announc. Math. Sci., 17 (2010), 104–121, arXiv: 1003.5960 | DOI | MR | Zbl
[9] Croft H.T., Falconer K.J., Guy R.K., Unsolved problems in geometry. Unsolved problems in intuitive mathematics, Probl. Books in Math., Springer, New York, 1991 | DOI | MR
[10] Evans C.G., “Lagrangian mean curvature flow in the complex projective plane”, Geom. Topol. (to appear) , arXiv: 2202.06859
[11] Gathercole E., Superheavy skeleta for non-normal crossings divisors, arXiv: 2408.13187 | Zbl
[12] Goldstein E., Some estimates related to Oh's conjecture for the Clifford tori in $\mathbb{CP}^n$, arXiv: math.DG/0311460
[13] Heil E., “Existenz eines $6$-Normalenpunktes in einem konvexen Körper”, Arch. Math. (Basel), 32 (1979), 412–416 | DOI | MR | Zbl
[14] Heil E., “Existenz eines $6$-Normalenpunktes in einem konvexen Körper”, Arch. Math. (Basel), 33 (1979), 496–496 | DOI | MR
[15] Heil E., “Concurrent normals and critical points under weak smoothness assumptions”, Discrete Geometry and Convexity (New York, 1982), Ann. New York Acad. Sci., 440, New York Academy of Sciences, New York, 1985, 170–178, arXiv: 6632.1985 | DOI | MR | Zbl
[16] Howard R., The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc., 106, 1993, vi+69 pp. | DOI | MR
[17] Klain D.A., Rota G.C., Introduction to geometric probability, Lezioni Lincee, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[18] Kuiper N.H., “Double normals of convex bodies”, Israel J. Math., 2 (1964), 71–80 | DOI | MR | Zbl
[19] Lê H.V., “Application of integral geometry to minimal surfaces”, Internat. J. Math., 4 (1993), 89–111 | DOI | MR | Zbl
[20] Lusternik L., Schnirelmann L., Méthodes topologiques dans les problèmes variationnels, Issledowatelskij Institut Mathematiki i Mechaniki, M., 1930
[21] Mak C.Y., Smith I., “Non-displaceable Lagrangian links in four-manifolds”, Geom. Funct. Anal., 31 (2021), 438–481, arXiv: 1909.09924 | DOI | MR | Zbl
[22] Oakley J., Usher M., On certain {L}agrangian submanifolds of $S^2\times S^2$ and $\mathbb{C}{\rm P}^n$, Algebr. Geom. Topol., 16 (2016), 149–209, arXiv: 1311.5152 | DOI | MR | Zbl
[23] Oh Y.-G., Second variation and stabilities of minimal {L}agrangian submanifolds in {K}ähler manifolds, Invent. Math., 101 (1990), 501–519 | DOI | MR
[24] Oh Y.-G., Tight {L}agrangian submanifolds in $\mathbb{C}{\rm P}^n$,, Math. Z., 207 (1991), 409–416 | DOI | MR
[25] Oh Y.-G., Volume minimization of {L}agrangian submanifolds under {H}amiltonian deformations, Math. Z., 212 (1993), 175–192 | DOI | MR
[26] Pardon J., “Concurrent normals to convex bodies and spaces of Morse functions”, Math. Ann., 352 (2012), 55–71 | DOI | MR | Zbl
[27] Polterovich L., Shelukhin E., “Lagrangian configurations and Hamiltonian maps”, Compos. Math., 159 (2023), 2483–2520, arXiv: 2102.06118 | DOI | MR | Zbl
[28] Viterbo C., “Metric and isoperimetric problems in symplectic geometry”, J. Amer. Math. Soc., 13 (2000), 411–431 | DOI | MR | Zbl
[29] Weinstein A., Lectures on symplectic manifolds, CBMS Reg. Conf. Ser. Math., 29, American Mathematical Society, Providence, RI, 1977 | MR | Zbl