On Relative Tractor Bundles
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article contributes to the relative BGG-machinery for parabolic geometries. Starting from a relative tractor bundle, this machinery constructs a sequence of differential operators that are naturally associated to the geometry in question. In many situations of interest, it is known that this sequence provides a resolution of a sheaf that can locally be realized as a pullback from a local leaf space of a foliation that is naturally available in this situation. An explicit description of the latter sheaf was only available under much more restrictive assumptions. For any geometry which admits relative tractor bundles, we construct a large family of such bundles for which we obtain a simple, explicit description of the resolved sheaves under weak assumptions on the torsion of the geometry. In particular, we discuss the cases of Legendrean contact structures and of generalized path geometries, which are among the most important examples for which the relative BGG machinery is available. In both cases, we show that essentially all relative tractor bundles are obtained by our construction and our description of the resolved sheaves applies whenever the BGG sequence is a resolution.
Keywords: relative BGG-machinery, relative BGG resolution, relative tractor bundle, parabolic geometries, Legendrean contact structure, generalized path geometry.
@article{SIGMA_2024_20_a107,
     author = {Andreas \v{C}ap and Zhangwen Guo and Michal Andrzej Wasilewicz},
     title = {On {Relative} {Tractor} {Bundles}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a107/}
}
TY  - JOUR
AU  - Andreas Čap
AU  - Zhangwen Guo
AU  - Michal Andrzej Wasilewicz
TI  - On Relative Tractor Bundles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a107/
LA  - en
ID  - SIGMA_2024_20_a107
ER  - 
%0 Journal Article
%A Andreas Čap
%A Zhangwen Guo
%A Michal Andrzej Wasilewicz
%T On Relative Tractor Bundles
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a107/
%G en
%F SIGMA_2024_20_a107
Andreas Čap; Zhangwen Guo; Michal Andrzej Wasilewicz. On Relative Tractor Bundles. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a107/

[1] Baston R.J., “Almost Hermitian symmetric manifolds. II Differential invariants”, Duke Math. J., 63 (1991), 113–138 | DOI | MR | Zbl

[2] Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1989 | MR

[3] Bernšteĭn I.N., Gel'fand I.M., Gel'fand S.I., “Differential operators on the base affine space and a study of $\mathfrak{g}$-modules”, Lie Groups and Their Representations, Proc. Summer School (Bolyai János Math. Soc., Budapest, 1971), Halsted Press, New York, 1975, 21–64 | MR

[4] Calderbank D.M.J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103, arXiv: math.DG/0001158 | DOI | MR | Zbl

[5] Čap A., “Correspondence spaces and twistor spaces for parabolic geometries”, J. Reine Angew. Math., 582 (2005), 143–172, arXiv: math.DG/0102097 | DOI | MR | Zbl

[6] Čap A., Slovák J., “Weyl structures for parabolic geometries”, Math. Scand., 93 (2003), 53–90, arXiv: math.DG/0001166 | DOI | MR | Zbl

[7] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Math. Surveys Monogr., 154, American Mathematical Society, Providence, RI, 2009 | DOI | MR | Zbl

[8] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl

[9] Čap A., Souček V., “Relative BGG sequences: I Algebra”, J. Algebra, 463 (2016), 188–210, arXiv: 1510.03331 | DOI | MR | Zbl

[10] Čap A., Souček V., “Relative BGG sequences; II BGG machinery and invariant operators”, Adv. Math., 320 (2017), 1009–1062, arXiv: 1510.03986 | DOI | MR | Zbl

[11] Doubrov B., Medvedev A., The D., “Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Math. Z., 297 (2021), 669–709, arXiv: 1711.02389 | DOI | MR | Zbl

[12] Doubrov B., Merker J., The D., “Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Int. Math. Res. Not., 2022 (2022), 15421–15473, arXiv: 2010.06334 | DOI | MR | Zbl

[13] Eastwood M., “A complex from linear elasticity”, Rend. Circ. Mat. Palermo (2) Suppl., 63 (2000), 23–29 | MR | Zbl

[14] Fels M.E., “The equivalence problem for systems of second-order ordinary differential equations”, Proc. London Math. Soc., 71 (1995), 221–240 | DOI | MR | Zbl

[15] Guo Z., Generalized path geometries and almost Grassmannian structures, Ph.D. Thesis, in preparation, University of Vienna, 2024

[16] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl

[17] Lepowsky J., “A generalization of the Bernstein–Gelfand–Gelfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl

[18] Ma T., Flood K.J., Matveev V.S., Žádník V., “Canonical curves and Kropina metrics in Lagrangian contact geometry”, Nonlinearity, 37 (2024), 015007, 36 pp. | DOI | MR | Zbl

[19] Michor P.W., Topics in differential geometry, Grad. Stud. Math., 93, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl

[20] Takeuchi M., “Lagrangean contact structures on projective cotangent bundles”, Osaka J. Math., 31 (1994), 837–860 | DOI | MR | Zbl

[21] Wasilewicz M.A., “Elementary relative tractor calculus for Legendrean contact structures”, Arch. Math. (Brno), 58 (2022), 339–347, arXiv: 2205.05326 | DOI | MR | Zbl

[22] Wasilewicz M.A., Geometry of Legendrean distributions, Ph.D. Thesis, in preparation, University of Vienna, 2024