@article{SIGMA_2024_20_a107,
author = {Andreas \v{C}ap and Zhangwen Guo and Michal Andrzej Wasilewicz},
title = {On {Relative} {Tractor} {Bundles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a107/}
}
Andreas Čap; Zhangwen Guo; Michal Andrzej Wasilewicz. On Relative Tractor Bundles. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a107/
[1] Baston R.J., “Almost Hermitian symmetric manifolds. II Differential invariants”, Duke Math. J., 63 (1991), 113–138 | DOI | MR | Zbl
[2] Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1989 | MR
[3] Bernšteĭn I.N., Gel'fand I.M., Gel'fand S.I., “Differential operators on the base affine space and a study of $\mathfrak{g}$-modules”, Lie Groups and Their Representations, Proc. Summer School (Bolyai János Math. Soc., Budapest, 1971), Halsted Press, New York, 1975, 21–64 | MR
[4] Calderbank D.M.J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103, arXiv: math.DG/0001158 | DOI | MR | Zbl
[5] Čap A., “Correspondence spaces and twistor spaces for parabolic geometries”, J. Reine Angew. Math., 582 (2005), 143–172, arXiv: math.DG/0102097 | DOI | MR | Zbl
[6] Čap A., Slovák J., “Weyl structures for parabolic geometries”, Math. Scand., 93 (2003), 53–90, arXiv: math.DG/0001166 | DOI | MR | Zbl
[7] Čap A., Slovák J., Parabolic geometries. I Background and general theory, Math. Surveys Monogr., 154, American Mathematical Society, Providence, RI, 2009 | DOI | MR | Zbl
[8] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl
[9] Čap A., Souček V., “Relative BGG sequences: I Algebra”, J. Algebra, 463 (2016), 188–210, arXiv: 1510.03331 | DOI | MR | Zbl
[10] Čap A., Souček V., “Relative BGG sequences; II BGG machinery and invariant operators”, Adv. Math., 320 (2017), 1009–1062, arXiv: 1510.03986 | DOI | MR | Zbl
[11] Doubrov B., Medvedev A., The D., “Homogeneous Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Math. Z., 297 (2021), 669–709, arXiv: 1711.02389 | DOI | MR | Zbl
[12] Doubrov B., Merker J., The D., “Classification of simply-transitive Levi non-degenerate hypersurfaces in $\mathbb{C}^3$”, Int. Math. Res. Not., 2022 (2022), 15421–15473, arXiv: 2010.06334 | DOI | MR | Zbl
[13] Eastwood M., “A complex from linear elasticity”, Rend. Circ. Mat. Palermo (2) Suppl., 63 (2000), 23–29 | MR | Zbl
[14] Fels M.E., “The equivalence problem for systems of second-order ordinary differential equations”, Proc. London Math. Soc., 71 (1995), 221–240 | DOI | MR | Zbl
[15] Guo Z., Generalized path geometries and almost Grassmannian structures, Ph.D. Thesis, in preparation, University of Vienna, 2024
[16] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl
[17] Lepowsky J., “A generalization of the Bernstein–Gelfand–Gelfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl
[18] Ma T., Flood K.J., Matveev V.S., Žádník V., “Canonical curves and Kropina metrics in Lagrangian contact geometry”, Nonlinearity, 37 (2024), 015007, 36 pp. | DOI | MR | Zbl
[19] Michor P.W., Topics in differential geometry, Grad. Stud. Math., 93, American Mathematical Society, Providence, RI, 2008 | DOI | MR | Zbl
[20] Takeuchi M., “Lagrangean contact structures on projective cotangent bundles”, Osaka J. Math., 31 (1994), 837–860 | DOI | MR | Zbl
[21] Wasilewicz M.A., “Elementary relative tractor calculus for Legendrean contact structures”, Arch. Math. (Brno), 58 (2022), 339–347, arXiv: 2205.05326 | DOI | MR | Zbl
[22] Wasilewicz M.A., Geometry of Legendrean distributions, Ph.D. Thesis, in preparation, University of Vienna, 2024