The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we develop a method to obtain the algebraic classification of compatible pre-Lie algebras from the classification of pre-Lie algebras of the same dimension. We use this method to obtain the algebraic classification of complex 2-dimensional compatible pre-Lie algebras. As a byproduct, we obtain the classification of complex 2-dimensional compatible commutative associative, compatible associative and compatible Novikov algebras. In addition, we consider the geometric classification of varieties of cited algebras, that is the description of its irreducible components.
Keywords: geometric classification.
Mots-clés : compatible algebra, compatible associative algebra, compatible pre-Lie algebra, algebraic classification
@article{SIGMA_2024_20_a106,
     author = {Hani Abdelwahab and Ivan Kaygorodov and Abdenacer Makhlouf},
     title = {The {Algebraic} and {Geometric} {Classification} of {Compatible} {Pre-Lie} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/}
}
TY  - JOUR
AU  - Hani Abdelwahab
AU  - Ivan Kaygorodov
AU  - Abdenacer Makhlouf
TI  - The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/
LA  - en
ID  - SIGMA_2024_20_a106
ER  - 
%0 Journal Article
%A Hani Abdelwahab
%A Ivan Kaygorodov
%A Abdenacer Makhlouf
%T The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/
%G en
%F SIGMA_2024_20_a106
Hani Abdelwahab; Ivan Kaygorodov; Abdenacer Makhlouf. The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/

[1] Abdelwahab H., Barreiro E., Calderón A.J., Fernández Ouaridi A., “The algebraic classification and degenerations of nilpotent Poisson algebras”, J. Algebra, 615 (2023), 243–277 | DOI | MR | Zbl

[2] Abdelwahab H., Fernández O.A., Kaygorodov I., Degenerations of Poisson-type algebras, arXiv: 2403.17193

[3] Abdelwahab H., Fernández O.A., Martín González C., Degenerations of Poisson algebras, J. Algebra Appl. (to appear) , arXiv: 2209.09150 | DOI | MR

[4] Ben Hassine A., Chtioui T., Elhamdadi M., Mabrouk S., “Cohomology and deformations of left-symmetric Rinehart algebras”, Commun. Math., 32 (2024), 127–152, arXiv: 2010.00335 | DOI | MR

[5] Beneš T., Burde D., “Degenerations of pre-Lie algebras”, J. Math. Phys., 50 (2009), 112102, 9 pp., arXiv: 0809.2188 | DOI | MR | Zbl

[6] Beneš T., Burde D., “Classification of orbit closures in the variety of three-dimensional Novikov algebras”, J. Algebra Appl., 13 (2014), 1350081, 33 pp., arXiv: 1205.5714 | DOI | MR | Zbl

[7] Burde D., “Left-symmetric algebras, or pre-Lie algebras in geometry and physics”, Cent. Eur. J. Math., 4 (2006), 323–357 | DOI | MR | Zbl

[8] Chapoton F., Livernet M., “Pre-Lie algebras and the rooted trees operad”, Int. Math. Res. Not., 2001 (2001), 395–408, arXiv: math.QA/0002069 | DOI | MR | Zbl

[9] Chtioui T., Das A., Mabrouk S., “(Co)homology of compatible associative algebras”, Comm. Algebra, 52 (2024), 582–603, arXiv: 2107.09259 | DOI | MR | Zbl

[10] Das A., “Compatible $L_\infty$-algebras”, J. Algebra, 610 (2022), 241–269, arXiv: 2111.13306 | DOI | MR | Zbl

[11] Das A., “Cohomology and deformations of compatible Hom-Lie algebras”, J. Geom. Phys., 192 (2023), 104951, 14 pp., arXiv: 2202.03137 | DOI | MR | Zbl

[12] Das A., Guo S., Qin Y., “$L_\infty$-structures and cohomology theory of compatible $\mathcal{O}$-operators and compatible dendriform algebras”, J. Math. Phys., 65 (2024), 031701, 22 pp., arXiv: 2207.13980 | DOI | MR | Zbl

[13] Dotsenko V., “Compatible associative products and trees”, Algebra Number Theory, 3 (2009), 567–586, arXiv: 0809.1773 | DOI | MR | Zbl

[14] Dotsenko V., Ismailov N., Umirbaev U., “Polynomial identities in Novikov algebras”, Math. Z., 303 (2023), 60, 17 pp., arXiv: 2209.13662 | DOI | MR | Zbl

[15] Ehret Q., Makhlouf A., “On classification and deformations of Lie–Rinehart superalgebras”, Commun. Math., 30 (2022), 67–100, arXiv: 2107.11478 | DOI | MR

[16] Eick B., Moede T., “Computing subalgebras and $\mathbb Z_2$-gradings of simple Lie algebras over finite fields”, Commun. Math., 30 (2022), 37–50, arXiv: 2205.03155 | DOI | MR | Zbl

[17] Golubchik I.Z., Sokolov V.V., “Compatible Lie brackets and integrable equations of the principal chiral field model type”, Funct. Anal. Appl., 36 (2002), 172–181 | DOI | MR | Zbl

[18] Golubchik I.Z., Sokolov V.V., “Compatible Lie brackets and the Yang–Baxter equation”, Theoret. and Math. Phys., 146 (2006), 159–169 | DOI | MR | Zbl

[19] González D'León R.S., “On the free Lie algebra with multiple brackets”, Adv. Appl. Math., 79 (2016), 37–97, arXiv: 1408.5415 | DOI | MR | Zbl

[20] Grunewald F., O'Halloran J., “Varieties of nilpotent Lie algebras of dimension less than six”, J. Algebra, 112 (1988), 315–325 | DOI | MR | Zbl

[21] Hou S., Sheng Y., Zhou Y., “Deformations, cohomologies and abelian extensions of compatible 3-Lie algebras”, J. Geom. Phys., 202 (2024), 105218, 16 pp., arXiv: 2208.12647 | DOI | MR | Zbl

[22] Kaygorodov I., “Non-associative algebraic structures: classification and structure”, Commun. Math., 32 (2024), 1–62, arXiv: 2306.00425 | DOI | MR | Zbl

[23] Kaygorodov I., Khrypchenko M., Lopes S.A., “The geometric classification of nilpotent algebras”, J. Algebra, 633 (2023), 857–886, arXiv: 2102.10392 | DOI | MR | Zbl

[24] Kaygorodov I., Khrypchenko M., Páez-Guillán P., The geometric classification of non-associative algebras: a survey, arXiv: 2410.10825 | MR

[25] Kaygorodov I., Volkov Yu., The variety of two-dimensional algebras over an algebraically closed field, Canad. J. Math., 71 (2019), 819–842, arXiv: 1701.08233 | DOI | MR | Zbl

[26] Khrypchenko M., “$\sigma$-matching and interchangeable structures on certain associative algebras”, Commun. Math., 33 (2025), 6, 25 pp., arXiv: 2407.18734 | DOI | MR

[27] Ladra M., Leite da Cunha B., Lopes S.A., A classification of nilpotent compatible Lie algebras, arXiv: 2406.04036

[28] Liu F., “Combinatorial bases for multilinear parts of free algebras with two compatible brackets”, J. Algebra, 323 (2010), 132–166, arXiv: 0808.3439 | DOI | MR | Zbl

[29] Liu J., Sheng Y., Bai C., “$F$-manifold algebras and deformation quantization via pre-Lie algebras”, J. Algebra, 559 (2020), 467–495, arXiv: 2002.10238 | DOI | MR | Zbl

[30] Liu J., Sheng Y., Bai C., “Maurer–Cartan characterizations and cohomologies of compatible Lie algebras”, Sci. China Math., 66 (2023), 1177–1198, arXiv: 2102.04742 | DOI | MR | Zbl

[31] Lopes S.A., “Noncommutative algebra and representation theory: symmetry, structure invariants”, Commun. Math., 32 (2024), 63–117, arXiv: 2307.16808 | DOI | MR

[32] Mondal B., Saha R., “Cohomology, deformations and extensions of Rota–Baxter Leibniz algebras”, Commun. Math., 30 (2022), 93–117, arXiv: 2208.00560 | DOI | MR | Zbl

[33] Odesskii A., Sokolov V., “Algebraic structures connected with pairs of compatible associative algebras”, Int. Math. Res. Not., 2006 (2006), 43734, 35 pp., arXiv: math.QA/0512499 | DOI | MR

[34] Odesskii A., Sokolov V., “Compatible Lie brackets related to elliptic curve”, J. Math. Phys., 47 (2006), 013506, 14 pp., arXiv: math.QA/0506503 | DOI | MR | Zbl

[35] Odesskii A., Sokolov V., “Integrable matrix equations related to pairs of compatible associative algebras”, J. Phys. A, 39 (2006), 12447–12456, arXiv: math.QA/0604574 | DOI | MR | Zbl

[36] Odesskii A., Sokolov V., “Pairs of compatible associative algebras, classical Yang–Baxter equation and quiver representations”, Comm. Math. Phys., 278 (2008), 83–99, arXiv: math.QA/0611200 | DOI | MR | Zbl

[37] Shalev A., Smoktunowicz A., “From braces to pre-Lie rings”, Proc. Amer. Math. Soc., 152 (2024), 1545–1559, arXiv: 2207.03158 | DOI | MR | Zbl

[38] Smoktunowicz A., “On the passage from finite braces to pre-Lie rings”, Adv. Math., 409 (2022), 108683, 33 pp., arXiv: 2202.00085 | DOI | MR | Zbl

[39] Strohmayer H., “Operads of compatible structures and weighted partitions”, J. Pure Appl. Algebra, 212 (2008), 2522–2534, arXiv: 0706.2196 | DOI | MR | Zbl

[40] Zhang H., Gao X., Guo L., “Compatible structures of nonsymmetric operads, Manin products and Koszul duality”, Appl. Categ. Structures, 32 (2024), 2, 33 pp., arXiv: 2311.11394 | DOI | MR