Mots-clés : compatible algebra, compatible associative algebra, compatible pre-Lie algebra, algebraic classification
@article{SIGMA_2024_20_a106,
author = {Hani Abdelwahab and Ivan Kaygorodov and Abdenacer Makhlouf},
title = {The {Algebraic} and {Geometric} {Classification} of {Compatible} {Pre-Lie} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/}
}
TY - JOUR AU - Hani Abdelwahab AU - Ivan Kaygorodov AU - Abdenacer Makhlouf TI - The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/ LA - en ID - SIGMA_2024_20_a106 ER -
%0 Journal Article %A Hani Abdelwahab %A Ivan Kaygorodov %A Abdenacer Makhlouf %T The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/ %G en %F SIGMA_2024_20_a106
Hani Abdelwahab; Ivan Kaygorodov; Abdenacer Makhlouf. The Algebraic and Geometric Classification of Compatible Pre-Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a106/
[1] Abdelwahab H., Barreiro E., Calderón A.J., Fernández Ouaridi A., “The algebraic classification and degenerations of nilpotent Poisson algebras”, J. Algebra, 615 (2023), 243–277 | DOI | MR | Zbl
[2] Abdelwahab H., Fernández O.A., Kaygorodov I., Degenerations of Poisson-type algebras, arXiv: 2403.17193
[3] Abdelwahab H., Fernández O.A., Martín González C., Degenerations of Poisson algebras, J. Algebra Appl. (to appear) , arXiv: 2209.09150 | DOI | MR
[4] Ben Hassine A., Chtioui T., Elhamdadi M., Mabrouk S., “Cohomology and deformations of left-symmetric Rinehart algebras”, Commun. Math., 32 (2024), 127–152, arXiv: 2010.00335 | DOI | MR
[5] Beneš T., Burde D., “Degenerations of pre-Lie algebras”, J. Math. Phys., 50 (2009), 112102, 9 pp., arXiv: 0809.2188 | DOI | MR | Zbl
[6] Beneš T., Burde D., “Classification of orbit closures in the variety of three-dimensional Novikov algebras”, J. Algebra Appl., 13 (2014), 1350081, 33 pp., arXiv: 1205.5714 | DOI | MR | Zbl
[7] Burde D., “Left-symmetric algebras, or pre-Lie algebras in geometry and physics”, Cent. Eur. J. Math., 4 (2006), 323–357 | DOI | MR | Zbl
[8] Chapoton F., Livernet M., “Pre-Lie algebras and the rooted trees operad”, Int. Math. Res. Not., 2001 (2001), 395–408, arXiv: math.QA/0002069 | DOI | MR | Zbl
[9] Chtioui T., Das A., Mabrouk S., “(Co)homology of compatible associative algebras”, Comm. Algebra, 52 (2024), 582–603, arXiv: 2107.09259 | DOI | MR | Zbl
[10] Das A., “Compatible $L_\infty$-algebras”, J. Algebra, 610 (2022), 241–269, arXiv: 2111.13306 | DOI | MR | Zbl
[11] Das A., “Cohomology and deformations of compatible Hom-Lie algebras”, J. Geom. Phys., 192 (2023), 104951, 14 pp., arXiv: 2202.03137 | DOI | MR | Zbl
[12] Das A., Guo S., Qin Y., “$L_\infty$-structures and cohomology theory of compatible $\mathcal{O}$-operators and compatible dendriform algebras”, J. Math. Phys., 65 (2024), 031701, 22 pp., arXiv: 2207.13980 | DOI | MR | Zbl
[13] Dotsenko V., “Compatible associative products and trees”, Algebra Number Theory, 3 (2009), 567–586, arXiv: 0809.1773 | DOI | MR | Zbl
[14] Dotsenko V., Ismailov N., Umirbaev U., “Polynomial identities in Novikov algebras”, Math. Z., 303 (2023), 60, 17 pp., arXiv: 2209.13662 | DOI | MR | Zbl
[15] Ehret Q., Makhlouf A., “On classification and deformations of Lie–Rinehart superalgebras”, Commun. Math., 30 (2022), 67–100, arXiv: 2107.11478 | DOI | MR
[16] Eick B., Moede T., “Computing subalgebras and $\mathbb Z_2$-gradings of simple Lie algebras over finite fields”, Commun. Math., 30 (2022), 37–50, arXiv: 2205.03155 | DOI | MR | Zbl
[17] Golubchik I.Z., Sokolov V.V., “Compatible Lie brackets and integrable equations of the principal chiral field model type”, Funct. Anal. Appl., 36 (2002), 172–181 | DOI | MR | Zbl
[18] Golubchik I.Z., Sokolov V.V., “Compatible Lie brackets and the Yang–Baxter equation”, Theoret. and Math. Phys., 146 (2006), 159–169 | DOI | MR | Zbl
[19] González D'León R.S., “On the free Lie algebra with multiple brackets”, Adv. Appl. Math., 79 (2016), 37–97, arXiv: 1408.5415 | DOI | MR | Zbl
[20] Grunewald F., O'Halloran J., “Varieties of nilpotent Lie algebras of dimension less than six”, J. Algebra, 112 (1988), 315–325 | DOI | MR | Zbl
[21] Hou S., Sheng Y., Zhou Y., “Deformations, cohomologies and abelian extensions of compatible 3-Lie algebras”, J. Geom. Phys., 202 (2024), 105218, 16 pp., arXiv: 2208.12647 | DOI | MR | Zbl
[22] Kaygorodov I., “Non-associative algebraic structures: classification and structure”, Commun. Math., 32 (2024), 1–62, arXiv: 2306.00425 | DOI | MR | Zbl
[23] Kaygorodov I., Khrypchenko M., Lopes S.A., “The geometric classification of nilpotent algebras”, J. Algebra, 633 (2023), 857–886, arXiv: 2102.10392 | DOI | MR | Zbl
[24] Kaygorodov I., Khrypchenko M., Páez-Guillán P., The geometric classification of non-associative algebras: a survey, arXiv: 2410.10825 | MR
[25] Kaygorodov I., Volkov Yu., The variety of two-dimensional algebras over an algebraically closed field, Canad. J. Math., 71 (2019), 819–842, arXiv: 1701.08233 | DOI | MR | Zbl
[26] Khrypchenko M., “$\sigma$-matching and interchangeable structures on certain associative algebras”, Commun. Math., 33 (2025), 6, 25 pp., arXiv: 2407.18734 | DOI | MR
[27] Ladra M., Leite da Cunha B., Lopes S.A., A classification of nilpotent compatible Lie algebras, arXiv: 2406.04036
[28] Liu F., “Combinatorial bases for multilinear parts of free algebras with two compatible brackets”, J. Algebra, 323 (2010), 132–166, arXiv: 0808.3439 | DOI | MR | Zbl
[29] Liu J., Sheng Y., Bai C., “$F$-manifold algebras and deformation quantization via pre-Lie algebras”, J. Algebra, 559 (2020), 467–495, arXiv: 2002.10238 | DOI | MR | Zbl
[30] Liu J., Sheng Y., Bai C., “Maurer–Cartan characterizations and cohomologies of compatible Lie algebras”, Sci. China Math., 66 (2023), 1177–1198, arXiv: 2102.04742 | DOI | MR | Zbl
[31] Lopes S.A., “Noncommutative algebra and representation theory: symmetry, structure invariants”, Commun. Math., 32 (2024), 63–117, arXiv: 2307.16808 | DOI | MR
[32] Mondal B., Saha R., “Cohomology, deformations and extensions of Rota–Baxter Leibniz algebras”, Commun. Math., 30 (2022), 93–117, arXiv: 2208.00560 | DOI | MR | Zbl
[33] Odesskii A., Sokolov V., “Algebraic structures connected with pairs of compatible associative algebras”, Int. Math. Res. Not., 2006 (2006), 43734, 35 pp., arXiv: math.QA/0512499 | DOI | MR
[34] Odesskii A., Sokolov V., “Compatible Lie brackets related to elliptic curve”, J. Math. Phys., 47 (2006), 013506, 14 pp., arXiv: math.QA/0506503 | DOI | MR | Zbl
[35] Odesskii A., Sokolov V., “Integrable matrix equations related to pairs of compatible associative algebras”, J. Phys. A, 39 (2006), 12447–12456, arXiv: math.QA/0604574 | DOI | MR | Zbl
[36] Odesskii A., Sokolov V., “Pairs of compatible associative algebras, classical Yang–Baxter equation and quiver representations”, Comm. Math. Phys., 278 (2008), 83–99, arXiv: math.QA/0611200 | DOI | MR | Zbl
[37] Shalev A., Smoktunowicz A., “From braces to pre-Lie rings”, Proc. Amer. Math. Soc., 152 (2024), 1545–1559, arXiv: 2207.03158 | DOI | MR | Zbl
[38] Smoktunowicz A., “On the passage from finite braces to pre-Lie rings”, Adv. Math., 409 (2022), 108683, 33 pp., arXiv: 2202.00085 | DOI | MR | Zbl
[39] Strohmayer H., “Operads of compatible structures and weighted partitions”, J. Pure Appl. Algebra, 212 (2008), 2522–2534, arXiv: 0706.2196 | DOI | MR | Zbl
[40] Zhang H., Gao X., Guo L., “Compatible structures of nonsymmetric operads, Manin products and Koszul duality”, Appl. Categ. Structures, 32 (2024), 2, 33 pp., arXiv: 2311.11394 | DOI | MR