Mots-clés : vertex
@article{SIGMA_2024_20_a105,
author = {Nikita Nekrasov and Nicol\`o Piazzalunga},
title = {Global {Magni4icence,} or: {4G} {Networks}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a105/}
}
Nikita Nekrasov; Nicolò Piazzalunga. Global Magni4icence, or: 4G Networks. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a105/
[1] Arnold V.I., “Symplectization, complexification and mathematical trinities”, The Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., 24, American Mathematical Society, Providence, RI, 1999, 23–37 | DOI | MR | Zbl
[2] Atiyah M.F., “Instantons in two and four dimensions”, Comm. Math. Phys., 93 (1984), 437–451 | DOI | MR | Zbl
[3] Bae Y., Kool M., Park H., Counting surfaces on Calabi–Yau 4-folds I: foundations, arXiv: 2208.09474
[4] Bae Y., Kool M., Park H., “Counting surfaces on Calabi–Yau 4-folds II: $\mathrm{DT}$-$\mathrm{PT}_0$ correspondence”, arXiv: 2402.06526
[5] Baulieu L., Kanno H., Singer I.M., “Cohomological Yang–Mills theory in eight dimensions”, Dualities in Gauge and String Theories (Seoul/Sokcho, 1997), World Scientific Publishing, River Edge, NJ, 1998, 365–373, arXiv: hep-th/9705127 | DOI | MR | Zbl
[6] Baulieu L., Losev A., Nekrasov N., “Chern–Simons and twisted supersymmetry in various dimensions”, Nuclear Phys. B, 522 (1998), 82–104, arXiv: hep-th/9707174 | DOI | MR | Zbl
[7] Belavin A.A., Polyakov A.M., Schwartz A.S., Tyupkin Y.S., “Pseudoparticle solutions of the Yang–Mills equations”, Phys. Lett. B, 59 (1975), 85–87 | DOI | MR
[8] Bershadsky M., Johansen A., Sadov V., Vafa C., “Topological reduction of $4$D SYM to $2$D $\sigma$-models”, Nuclear Phys. B, 448 (1995), 166–186, arXiv: hep-th/9501096 | DOI | MR | Zbl
[9] Bojko A., “Orientations for DT invariants on quasi-projective Calabi–Yau 4-folds”, Adv. Math., 388 (2021), 107859, 59 pp., arXiv: 2008.08441 | DOI | MR | Zbl
[10] Bonelli G., Fasola N., Tanzini A., Zenkevich Y., “ADHM in 8d, coloured solid partitions and Donaldson–Thomas invariants on orbifolds”, J. Geom. Phys., 191 (2023), 104910, 27 pp., arXiv: 2011.02366 | DOI | MR | Zbl
[11] Borisov D., Joyce D., “Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds”, Geom. Topol., 21 (2017), 3231–3311, arXiv: 1504.00690 | DOI | MR | Zbl
[12] Cao Y., Gross J., Joyce D., “Orientability of moduli spaces of ${\rm Spin}(7)$-instantons and coherent sheaves on Calabi–Yau 4-folds”, Adv. Math., 368 (2020), 107134, 60 pp., arXiv: 1811.09658 | DOI | MR | Zbl
[13] Cao Y., Kool M., Monavari S., “$K$-theoretic DT/PT correspondence for toric Calabi–Yau 4-folds”, Comm. Math. Phys., 396 (2022), 225–264, arXiv: 1906.07856 | DOI | MR | Zbl
[14] Cao Y., Kool M., Monavari S., “A Donaldson–Thomas crepant resolution conjecture on Calabi–Yau 4-folds”, Trans. Amer. Math. Soc., 376 (2023), 8225–8268, arXiv: 2301.11629 | DOI | MR | Zbl
[15] Cao Y., Leung C.L., Donaldson–Thomas theory for Calabi–Yau 4-folds, arXiv: 1407.7659
[16] Cao Y., Zhao G., Quasimaps to quivers with potentials, arXiv: 2306.01302
[17] Chekeres O., Losev A.S., Mnev P., Youmans D.R., “Theory of holomorphic maps of two-dimensional complex manifolds to toric manifolds and type-A multi-string theory”, JETP Lett., 115 (2022), 52–57, arXiv: 2111.06836 | DOI
[18] Corrigan E., Devchand C., Fairlie D.B., Nuyts J., “First-order equations for gauge fields in spaces of dimension greater than four”, Nuclear Phys. B, 214 (1983), 452–464 | DOI | MR
[19] Dedushenko M., Nekrasov N., Interfaces and quantum algebras, II: Cigar partition function, arXiv: 2306.16434 | MR
[20] Denef F., Moore G.W., “Split states, entropy enigmas, holes and halos”, J. High Energy Phys., 2011:11 (2011), 129, 152 pp., arXiv: hep-th/0702146 | DOI | MR | Zbl
[21] Dijkgraaf R., Heidenreich B., Jefferson P., Vafa C., “Negative branes, supergroups and the signature of spacetime”, J. High Energy Phys., 2018:2 (2018), 050, 61 pp., arXiv: 1603.05665 | DOI | MR
[22] Douglas M.R., Moore G.W., D-branes, quivers, and ALE instantons, arXiv: hep-th/9603167
[23] Fucito F., Morales J.F., Poghossian R., “The chiral ring of gauge theories in eight dimensions”, J. High Energy Phys., 2021:4 (2021), 198, 15 pp., arXiv: 2010.10235 | DOI | MR | Zbl
[24] Iqbal A., Vafa C., Nekrasov N., Okounkov A., “Quantum foam and topological strings”, J. High Energy Phys., 2008:4 (2008), 011, 47 pp., arXiv: hep-th/0312022 | DOI | MR | Zbl
[25] Iritani H., “Gamma classes and quantum cohomology”, International Congress of Mathematicians, EMS Press, Berlin, 2023, 2552–2574, arXiv: 2307.15938 | DOI | MR | Zbl
[26] Kanno H., “Quiver matrix model of ADHM type and BPS state counting in diverse dimensions”, PTEP. Prog. Theor. Exp. Phys., 2020 (2020), 11B104, 22 pp., arXiv: 2004.05760 | DOI | MR | Zbl
[27] Kimura T., Pestun V., Super instanton counting and localization, arXiv: 1905.01513 | MR
[28] Losev A., Nekrasov N., Shatashvili S., “Freckled instantons in two and four dimensions”, Classical Quantum Gravity, 17 (2000), 1181–1187, arXiv: hep-th/9911099 | DOI | MR | Zbl
[29] Maulik D., Nekrasov N., Okounkov A., Pandharipande R., “Gromov–Witten theory and Donaldson–Thomas theory. I”, Compos. Math., 142 (2006), 1263–1285, arXiv: math.AG/0312059 | DOI | MR | Zbl
[30] Maulik D., Nekrasov N., Okounkov A., Pandharipande R., “Gromov–Witten theory and Donaldson–Thomas theory. II”, Compos. Math., 142 (2006), 1286–1304, arXiv: math.AG/0406092 | DOI | MR | Zbl
[31] Monavari S., “Canonical vertex formalism in DT theory of toric Calabi–Yau 4-folds”, J. Geom. Phys., 174 (2022), 104466, 15 pp., arXiv: 2203.11381 | DOI | MR | Zbl
[32] Monavari S., Equivariant enumerative geometry and Donaldson–Thomas theory, Ph.D. Thesis, Utrecht University, 2022
[33] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI | MR | Zbl
[34] Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., 18, American Mathematical Society, Providence, RI, 1999, arXiv: 1401.6782 | DOI | MR | Zbl
[35] Nekrasov N., “Lectures on open strings, and noncommutative gauge theories”, Unity from Duality: Gravity, Gauge Theory and Strings (Les Houches, 2001), NATO Adv. Study Inst., EDP Sciences, Les Ulis, 2003, 477–495, arXiv: hep-th/0203109 | DOI | MR
[36] Nekrasov N., A la recherche de la $M$-theorie perdue. $\mathbf{Z}$-theory: chasing $\mathfrak{m}/f$-theory, arXiv: hep-th/0412021
[37] Nekrasov N., “Localizing gauge theories”, XIVth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2005, 645–654 | DOI | MR | Zbl
[38] Nekrasov N., “$\mathbf{Z}$-theory: chasing $\mathfrak{m}/f$ theory”, C. R. Phys., 6 (2005), 261–269 | DOI | MR
[39] Nekrasov N., “Instanton partition functions and M-theory”, Jpn. J. Math., 4 (2009), 63–93 | DOI | MR | Zbl
[40] Nekrasov N., “$BPS/CFT$ correspondence: non-perturbative Dyson–Schwinger equations and qq-characters”, J. High Energy Phys., 2016:3 (2016), 181, 70 pp., arXiv: 1512.05388 | DOI | MR | Zbl
[41] Nekrasov N., “Magnificent four”, Adv. Theor. Math. Phys., 24 (2020), 1171–1202, arXiv: 1712.08128 | DOI | MR | Zbl
[42] Nekrasov N., Okounkov A., “Membranes and sheaves”, Algebr. Geom., 3 (2016), 320–369, arXiv: 1404.2323 | DOI | MR | Zbl
[43] Nekrasov N., Piazzalunga N., “Magnificent four with colors”, Comm. Math. Phys., 372 (2019), 573–597, arXiv: 1808.05206 | DOI | MR | Zbl
[44] Nekrasov N., Prabhakar N.S., “Spiked instantons from intersecting D-branes”, Nuclear Phys. B, 914 (2017), 257–300, arXiv: 1611.03478 | DOI | Zbl
[45] Nekrasov N., Schwarz A., “Instantons on noncommutative $\mathbb{R}^4$, and $(2,0)$ superconformal six-dimensional theory”, Comm. Math. Phys., 198 (1998), 689–703, arXiv: hep-th/9802068 | DOI | MR | Zbl
[46] Oh J., Thomas R.P., “Counting sheaves on Calabi–Yau 4-folds, I”, Duke Math. J., 172 (2023), 1333–1409, arXiv: 2009.05542 | DOI | MR | Zbl
[47] Piazzalunga N., The one-legged {K}-theoretic vertex of fourfolds from 3d gauge theory, arXiv: 2306.12405
[48] Pomoni E., Yan W., Zhang X., “Tetrahedron instantons”, Comm. Math. Phys., 393 (2022), 781–838, arXiv: 2106.11611 | DOI | MR | Zbl
[49] Seiberg N., “Five-dimensional SUSY field theories, non-trivial fixed points and string dynamics”, Phys. Lett. B, 388 (1996), 753–760, arXiv: hep-th/9608111 | DOI | MR
[50] Seiberg N., “A note on background independence in noncommutative gauge theories, Matrix model, and tachyon condensation”, J. High Energy Phys., 2000:9 (2000), 003, 16 pp., arXiv: hep-th/0008013 | DOI | MR | Zbl
[51] Szabo R.J., Tirelli M., “Instanton counting and Donaldson–Thomas theory on toric Calabi–Yau four-orbifolds”, Adv. Theor. Math. Phys., 27 (2023), 1665–1757, arXiv: 2301.13069 | DOI | MR | Zbl
[52] Witten E., “Monopoles and four-manifolds”, Math. Res. Lett., 1 (1994), 769–796, arXiv: hep-th/9411102 | DOI | MR | Zbl