Mots-clés : universal $R$-matrix.
@article{SIGMA_2024_20_a104,
author = {Xianghua Wu and Hongda Lin and Honglian Zhang},
title = {$R${-Matrix} {Presentation} of {Quantum} {Affine} {Superalgebra} for {Type} $\mathfrak{osp}(2m+1|2n)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a104/}
}
TY - JOUR
AU - Xianghua Wu
AU - Hongda Lin
AU - Honglian Zhang
TI - $R$-Matrix Presentation of Quantum Affine Superalgebra for Type $\mathfrak{osp}(2m+1|2n)$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2024
VL - 20
UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a104/
LA - en
ID - SIGMA_2024_20_a104
ER -
%0 Journal Article
%A Xianghua Wu
%A Hongda Lin
%A Honglian Zhang
%T $R$-Matrix Presentation of Quantum Affine Superalgebra for Type $\mathfrak{osp}(2m+1|2n)$
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a104/
%G en
%F SIGMA_2024_20_a104
Xianghua Wu; Hongda Lin; Honglian Zhang. $R$-Matrix Presentation of Quantum Affine Superalgebra for Type $\mathfrak{osp}(2m+1|2n)$. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a104/
[1] Beck J., “Braid group action and quantum affine algebras”, Comm. Math. Phys., 165 (1994), 555–568, arXiv: hep-th/9404165 | DOI | MR | Zbl
[2] Bezerra L., Futorny V., Kashuba I., Drinfeld realization for quantum affine superalgebras of type $B$, arXiv: 2405.05533
[3] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y({\mathfrak{gl}}_n)$”, Comm. Math. Phys., 254 (2005), 191–220, arXiv: math.QA/0407011 | DOI | MR | Zbl
[4] Cai J.-F., Wang S.-K., Wu K., Zhao W.-Z., “Drinfeld realization of quantum affine superalgebra $U_q(\widehat{\mathfrak{gl}(1|1)})$”, J. Phys. A, 31 (1998), 1989–1994, arXiv: q-alg/9703022 | DOI | MR | Zbl
[5] Damiani I., “Drinfeld realization of affine quantum algebras: the relations”, Publ. Res. Inst. Math. Sci., 48 (2012), 661–733, arXiv: 1406.6729 | DOI | MR | Zbl
[6] Damiani I., “From the Drinfeld realization to the Drinfeld–Jimbo presentation of affine quantum algebras: injectivity”, Publ. Res. Inst. Math. Sci., 51 (2015), 131–171, arXiv: 1407.0341 | DOI | MR | Zbl
[7] Ding J.T., Frenkel I.B., “Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR | Zbl
[8] Drinfeld V.G., “A new realization of Yangians and of quantum affine algebras”, Soviet Math. Dokl., 36 (1988), 212–216 | MR | Zbl
[9] Drinfeld V.G., “Hopf algebras and the quantum Yang–Baxter equation”, Yang–Baxter Equation in Integrable Systems, Adv. Ser. Math. Phys., World Scientific Publishing, 1990, 264–268 | DOI
[10] Fan H., Hou B.-Y., Shi K.-J., “Drinfeld constructions of the quantum affine superalgebra $U_q(\widehat {\mathfrak{gl}(m|n)})$”, J. Math. Phys., 38 (1997), 411–433 | DOI | MR | Zbl
[11] Frassek R., Tsymbaliuk A., Orthosymplectic Yangians, arXiv: 2311.18818
[12] Frenkel E., Mukhin E., “The Hopf algebra $\operatorname{Rep} U_q\widehat{\mathfrak{gl}}_\infty$”, Selecta Math. (N.S.), 8 (2002), 537–635, arXiv: math.QA/0103126 | DOI | MR | Zbl
[13] Frenkel I.B., Reshetikhin N.Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl
[14] Galleas W., Martins M.J., “New $R$-matrices from representations of braid-monoid algebras based on superalgebras”, Nuclear Phys. B, 732 (2006), 444–462 | DOI | MR | Zbl
[15] Gelfand I.M., Retakh V.S., “Determinants of matrices over noncommutative rings”, Funct. Anal. Appl., 25 (1991), 91–102 | DOI | MR | Zbl
[16] Gould M.D., Zhang Y.-Z., “On super-RS algebra and Drinfeld realization of quantum affine superalgebras”, Lett. Math. Phys., 44 (1998), 291–308, arXiv: q-alg/9712011 | DOI | MR | Zbl
[17] Jimbo M., “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[18] Jimbo M., “Quantum $R$ matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl
[19] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Comm. Math. Phys., 361 (2018), 827–872, arXiv: 1705.08155 | DOI | MR | Zbl
[20] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$”, J. Math. Phys., 61 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR | Zbl
[21] Jing N., Liu M., Molev A., “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp., arXiv: 1911.03496 | DOI | MR | Zbl
[22] Jing N., Zhang H., “Drinfeld realization of twisted quantum affine algebras”, Comm. Algebra, 35 (2007), 3683–3698 | DOI | MR | Zbl
[23] Jing N., Zhang H., “Drinfeld realization of quantum twisted affine algebras via braid group”, Adv. Math. Phys., 2016 (2016), 4843075, 15 pp., arXiv: 1301.3550 | DOI | MR | Zbl
[24] Kac V.G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[25] Khoroshkin S.M., Tolstoy V.N., Twisting of quantum (super)algebras. Connection of Drinfeld's and Cartan–Weyl realizations for quantum affine algebras, arXiv: hep-th/9404036
[26] Khoroshkin S.M., Tolstoy V.N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl
[27] Krob D., Leclerc B., “Minor identities for quasi-determinants and quantum determinants”, Comm. Math. Phys., 169 (1995), 1–23, arXiv: hep-th/9411194 | DOI | MR | Zbl
[28] Levendorskiĭ S.Z., “On generators and defining relations of Yangians”, J. Geom. Phys., 12 (1993), 1–11 | DOI | MR | Zbl
[29] Lin H., Yamane H., Zhang H., “On generators and defining relations of quantum affine superalgebra $U_q (\widehat{\mathfrak{sl}}_{m|n})$”, J. Algebra Appl., 23 (2024), 2450021, 29 pp. | DOI | MR | Zbl
[30] Lu K., “Isomorphism between twisted $q$-Yangians and affine $i$quantum groups: type AI”, Int. Math. Res. Not. (to appear) , arXiv: 2308.12484 | DOI | MR
[31] Mehta M., Dancer K.A., Gould M.D., Links J., “Generalized Perk–Schultz models: solutions of the Yang–Baxter equation associated with quantized orthosymplectic superalgebras”, J. Phys. A, 39 (2006), L17–L26, arXiv: nlin.SI/0509019 | DOI | MR | Zbl
[32] Molev A.I., “A Drinfeld-type presentation of the orthosymplectic Yangians”, Algebr. Represent. Theory, 27 (2024), 469–494, arXiv: 2112.10419 | DOI | MR | Zbl
[33] Reshetikhin N.Yu., Semenov-Tian-Shansky M.A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl
[34] van de Leur J.W., “A classification of contragredient Lie superalgebras of finite growth”, Comm. Algebra, 17 (1989), 1815–1841 | DOI | MR | Zbl
[35] Wu X., Lin H., Zhang H., Braid group action and quantum affine superalgebra for type $\mathfrak{osp}(2m+1|2n)$, arXiv: 2410.21755
[36] Xu Y., Zhang R., Drinfeld realisations and vertex operator respresentations of the quantum affine superalgebras, arXiv: 1802.09702
[37] Yamane H., “On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras”, Publ. Res. Inst. Math. Sci., 35 (1999), 321–390, arXiv: q-alg/9603015 | DOI | MR | Zbl
[38] Zhang H., “RTT realization of quantum affine superalgebras and tensor products”, Int. Math. Res. Not., 2016 (2016), 1126–1157, arXiv: 1407.7001 | DOI | MR | Zbl
[39] Zhang H., Jing N., “Drinfeld realization of twisted quantum affine algebra”, Comm. Algebra, 35 (2007), 3683–3698, arXiv: 1301.3550 | DOI | MR | Zbl
[40] Zhang Y.-Z., “Comments on the {D}rinfeld realization of the quantum affine superalgebra $U_q[\mathfrak{gl}(m|n)^{(1)}]$ and its {H}opf algebra structure”, J. Phys. A, 30 (1997), 8325–8335, arXiv: q-alg/9703020 | DOI | MR | Zbl