Mots-clés : vertex evaluation
@article{SIGMA_2024_20_a101,
author = {Julian Farnsteiner and Christoph Schweigert},
title = {The {Evaluation} of {Graphs} on {Surfaces} for {State-Sum} {Models} with {Defects}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a101/}
}
TY - JOUR AU - Julian Farnsteiner AU - Christoph Schweigert TI - The Evaluation of Graphs on Surfaces for State-Sum Models with Defects JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a101/ LA - en ID - SIGMA_2024_20_a101 ER -
%0 Journal Article %A Julian Farnsteiner %A Christoph Schweigert %T The Evaluation of Graphs on Surfaces for State-Sum Models with Defects %J Symmetry, integrability and geometry: methods and applications %D 2024 %V 20 %U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a101/ %G en %F SIGMA_2024_20_a101
Julian Farnsteiner; Christoph Schweigert. The Evaluation of Graphs on Surfaces for State-Sum Models with Defects. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a101/
[1] Balsam B., Turaev–Viro theory as an extended TQFT, Ph.D. Thesis, State University of New York at Stony Brook, 2010, arXiv: 1004.1533
[2] Barrett J.W., Meusburger C., Schaumann G., “Gray categories with duals and their diagrams”, Adv. Math., 450 (2024), 109740, 129 pp., arXiv: 1211.0529 | DOI
[3] Barrett J.W., Westbury B.W., “Spherical categories”, Adv. Math., 143 (1999), 357–375, arXiv: hep-th/9310164 | DOI
[4] Bartlett B., Douglas C., Schommer-Pries C., Vicary J., Modular categories as representations of the 3-dimensional bordism 2-category, arXiv: 1509.06811
[5] Carqueville N., Orbifolds of topological quantum field theories, arXiv: 2307.16674
[6] Carqueville N., Meusburger C., Schaumann G., “3-dimensional defect TQFTs and their tricategories”, Adv. Math., 364 (2020), 107024, 58 pp., arXiv: 1603.01171 | DOI
[7] Carqueville N., Müller L., Orbifold completion of 3-categories, arXiv: 2307.06485
[8] Carqueville N., Runkel I., Schaumann G., “Orbifolds of $n$-dimensional defect TQFTs”, Geom. Topol., 23 (2019), 781–864, arXiv: 1705.06085 | DOI
[9] Carqueville N., Zotto M.D., Runkel I., “Topological defects”, Encyclopedia of Mathematical Physics, 5, Elsevier, 2025, 621–647, arXiv: 2311.02449 | DOI
[10] Costello K., “Topological conformal field theories and Calabi–Yau categories”, Adv. Math., 210 (2007), 165–214, arXiv: math.QA/0412149 | DOI
[11] Davydov A., Kong L., Runkel I., “Field theories with defects and the centre functor”, Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., 83, American Mathematical Society, Providence, RI, 2011, 71–128, arXiv: 1107.0495 | DOI
[12] Douglas C.L., Schommer-Pries C., Snyder N., “The balanced tensor product of module categories”, Kyoto J. Math., 59 (2019), 167–179, arXiv: 1406.4204 | DOI
[13] Douglas C.L., Schommer-Pries C., Snyder N., Dualizable tensor categories, Mem. Amer. Math. Soc., 268, 2020, vii+88 pp., arXiv: 1312.7188 | DOI
[14] Etingof P., Gelaki S., Nikshych D., Ostrik V., Tensor categories, Math. Surveys Monogr., 205, American Mathematical Society, Providence, RI, 2015 | DOI
[15] Etingof P., Nikshych D., Ostrik V., “Fusion categories and homotopy theory”, Quantum Topol., 1 (2010), 209–273, arXiv: 0909.3140 | DOI
[16] Farnsteiner J., Towards Turaev–Viro topological field theories on stratified manifolds. Evaluation at vertices and local moves, Ph.D. Thesis, Universität Hamburg, 2023 https://ediss.sub.uni-hamburg.de/handle/ediss/10494
[17] Fuchs J., Priel J., Schweigert C., Valentino A., “On the Brauer groups of symmetries of abelian Dijkgraaf–Witten theories”, Comm. Math. Phys., 339 (2015), 385–405, arXiv: 1404.6646 | DOI
[18] Fuchs J., Schaumann G., Schweigert C., “A trace for bimodule categories”, Appl. Categ. Structures, 25 (2017), 227–268, arXiv: 1412.6968 | DOI
[19] Fuchs J., Schaumann G., Schweigert C., “Eilenberg–Watts calculus for finite categories and a bimodule Radford $S^4$ theorem”, Trans. Amer. Math. Soc., 373 (2020), 1–40, arXiv: 1612.04561 | DOI
[20] Fuchs J., Schaumann G., Schweigert C., “A modular functor from state sums for finite tensor categories and their bimodules”, Theory Appl. Categ., 38 (2022), 436–594, arXiv: 1911.06214
[21] Fuchs J., Schweigert C., Yang Y., String-net models for pivotal bicategories, arXiv: 2302.01468
[22] Kapustin A., Saulina N., “Surface operators in 3d topological field theory and 2d rational conformal field theory”, Mathematical Foundations of Quantum Field Theory and Perturbative String Theory, Proc. Sympos. Pure Math., 83, American Mathematical Society, Providence, RI, 2011, 175–198, arXiv: 1012.0911 | DOI
[23] Koppen V., Mulevičius V., Runkel I., Schweigert C., “Domain walls between 3d phases of Reshetikhin–Turaev TQFTs”, Comm. Math. Phys., 396 (2022), 1187–1220, arXiv: 2105.04613 | DOI
[24] MacLane S., Categories for the working mathematician, Grad. Texts in Math., 5, Springer, New York, 1971 | DOI
[25] Meusburger C., “State sum models with defects based on spherical fusion categories”, Adv. Math., 429 (2023), 109177, 97 pp., arXiv: 2205.06874 | DOI
[26] Moore G.W., Segal G., D-branes and K-theory in 2D topological field theory, arXiv: hep-th/0609042
[27] Ng S.-H., Schauenburg P., “Higher Frobenius–Schur indicators for pivotal categories”, Hopf Algebras and Generalizations, Contemp. Math., 441, American Mathematical Society, Providence, RI, 2007, 63–90, arXiv: math.QA/0503167 | DOI
[28] Schaumann G., Duals in tricategories and in the tricategory of bimodule categories, Ph.D. Thesis, Friedrich–Alexander–Universität Erlangen–Nürnberg, 2013
[29] Schaumann G., “Traces on module categories over fusion categories”, J. Algebra, 379 (2013), 382–425, arXiv: 1206.5716 | DOI
[30] Turaev V., Virelizier A., Monoidal categories and topological field theory, Progr. Math., 322, Birkhäuser, Cham, 2017 | DOI