The Wehrheim–Woodward Category of Linear Canonical Relations between $G$-Spaces
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024)
Cet article a éte moissonné depuis la source Math-Net.Ru
We extend the work in a previous paper with David Li-Bland to construct the Wehrheim–Woodward category $\mathrm{WW}(G\mathbf{SLREL})$ of equivariant linear canonical relations between linear symplectic $G$-spaces for a compact group $G$. When $G$ is the trivial group, this reduces to the previous result that the morphisms in $\mathrm{WW}(\mathbf{SLREL})$ may be identified with pairs $(L,k)$ consisting of a linear canonical relation and a nonnegative integer.
Keywords:
symplectic vector space, canonical relation, rigid monoidal category, highly selective category.
@article{SIGMA_2024_20_a100,
author = {Alan Weinstein},
title = {The {Wehrheim{\textendash}Woodward} {Category} of {Linear} {Canonical} {Relations} between $G${-Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a100/}
}
Alan Weinstein. The Wehrheim–Woodward Category of Linear Canonical Relations between $G$-Spaces. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a100/
[1] Contreras I., Mehta R.A., Stern W.H., “Frobenius and commutative pseudomonoids in the bicategory of spans”, J. Geom. Phys., 207 (2025), 105309, 31 pp., arXiv: 2311.15342 | DOI
[2] Gutt J., “Normal forms for symplectic matrices”, Port. Math., 71 (2014), 109–139, arXiv: 1307.2403 | DOI
[3] Li-Bland D., Weinstein A., “Selective categories and linear canonical relations”, SIGMA, 10 (2014), 100, 31 pp., arXiv: 1401.7302 | DOI
[4] Wehrheim K., Woodward C.T., “Functoriality for Lagrangian correspondences in Floer theory”, Quantum Topol., 1 (2010), 129–170, arXiv: 0708.2851 | DOI
[5] Weinstein A., “A note on the Wehrheim–Woodward category”, J. Geom. Mech., 3 (2011), 507–515, arXiv: 1012.0105 | DOI