Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notion of twisted sectors play a crucial role in orbifold Gromov–Witten theory. We introduce the notion of dihedral twisted sectors in order to construct Lagrangian Floer theory on symplectic orbifolds and discuss related issues.
Keywords: Floer theory, orbifold Lagrangians, dihedral twisted sectors.
@article{SIGMA_2024_20_a10,
     author = {Bohui Chen and Kaoru Ono and Bai-Ling Wang},
     title = {Twisted {Sectors} for {Lagrangian} {Floer} {Theory} on {Symplectic} {Orbifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/}
}
TY  - JOUR
AU  - Bohui Chen
AU  - Kaoru Ono
AU  - Bai-Ling Wang
TI  - Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/
LA  - en
ID  - SIGMA_2024_20_a10
ER  - 
%0 Journal Article
%A Bohui Chen
%A Kaoru Ono
%A Bai-Ling Wang
%T Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/
%G en
%F SIGMA_2024_20_a10
Bohui Chen; Kaoru Ono; Bai-Ling Wang. Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/

[1] Adem A., Leida J., Ruan Y., Orbifolds and stringy topology, Cambridge Tracts in Math., 171, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[2] Chen B., Du C.-Y., Liao A.-L., “Banach orbifold structure on groupoids of morphisms of orbifolds”, Differential Geom. Appl., 87 (2023), 101975, 41 pp. | DOI | MR | Zbl

[3] Chen W., Ruan Y., “Orbifold Gromov–Witten theory”, Orbifolds in Mathematics and Physics, Contemp. Math., 310, American Mathematical Society, Providence, RI, 2002, 25–85, arXiv: math.AG/0103156 | DOI | MR | Zbl

[4] Cho C.-H., Poddar M., “Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds”, J. Differential Geom., 98 (2014), 21–116, arXiv: 1206.3994 | DOI | MR | Zbl

[5] Floer A., “Morse theory for Lagrangian intersections”, J. Differential Geom., 28 (1988), 513–547 | DOI | MR | Zbl

[6] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, v. I, AMS/IP Stud. Adv. Math., 46.1, American Mathematical Society, Providence, RI, 2009 | DOI | MR

[7] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, v. II, AMS/IP Stud. Adv. Math., 46.2, American Mathematical Society, Providence, RI, 2009 | DOI | MR

[8] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Antisymplectic involution and Floer cohomology”, Geom. Topol., 21 (2017), 1–106, arXiv: 0912.2646 | DOI | MR | Zbl

[9] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: I”, Surveys in Differential Geometry 2017, Surv. Differ. Geom., 22, International Press, Somerville, MA, 2018, 133–190, arXiv: 1710.01459 | DOI | MR

[10] Fukaya K., Oh Y.-G., Ohta H., Ono K., Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: II, arXiv: 1808.06106

[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Kuranishi structures and virtual fundamental chains, Springer Monogr. Math., Springer, Singapore, 2020 | DOI | MR | Zbl

[12] Fukaya K., Ono K., “Arnold conjecture and Gromov–Witten invariant”, Topology, 38 (1999), 933–1048 | DOI | MR | Zbl

[13] Li J., Tian G., “Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds”, Topics in Symplectic $4$-Manifolds, First Int. Press Lect. Ser. I, International Press, Cambridge, MA, 1998, 47–83, arXiv: alg-geom/9608032 | MR | Zbl

[14] Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math., 91, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[15] Oh Y.-G., “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I”, Comm. Pure Appl. Math., 46 (1993), 949–993 | DOI | MR

[16] Oh Y.-G., “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. II $({\mathbb C}{\rm P}^n,{\mathbb R}{\rm P}^n)$”, Comm. Pure Appl. Math., 46 (1993), 995–1012 | DOI | MR | Zbl

[17] Ono K., Sign convention for $A_{\infty}$-operations in Bott–Morse case, Preprint, available upon request

[18] Ruan Y., “Virtual neighborhoods and pseudo-holomorphic curves”, Turkish J. Math., 23 (1999), 161–231, arXiv: alg-geom/9611021 | MR | Zbl

[19] Ruan Y., Tian G., “A mathematical theory of quantum cohomology”, J. Differential Geom., 42 (1995), 259–367, arXiv: 1110.3751 | DOI | MR | Zbl

[20] Satake I., “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl

[21] Siebert B., “Symplectic Gromov–Witten invariants”, New Trends in Algebraic Geometry, London Math. Soc. Lecture Note Ser., 264, Cambridge University Press, Cambridge, 1999, 375–424, arXiv: dg-ga/9608005 | DOI | MR | Zbl