@article{SIGMA_2024_20_a10,
author = {Bohui Chen and Kaoru Ono and Bai-Ling Wang},
title = {Twisted {Sectors} for {Lagrangian} {Floer} {Theory} on {Symplectic} {Orbifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2024},
volume = {20},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/}
}
TY - JOUR AU - Bohui Chen AU - Kaoru Ono AU - Bai-Ling Wang TI - Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds JO - Symmetry, integrability and geometry: methods and applications PY - 2024 VL - 20 UR - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/ LA - en ID - SIGMA_2024_20_a10 ER -
Bohui Chen; Kaoru Ono; Bai-Ling Wang. Twisted Sectors for Lagrangian Floer Theory on Symplectic Orbifolds. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a10/
[1] Adem A., Leida J., Ruan Y., Orbifolds and stringy topology, Cambridge Tracts in Math., 171, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl
[2] Chen B., Du C.-Y., Liao A.-L., “Banach orbifold structure on groupoids of morphisms of orbifolds”, Differential Geom. Appl., 87 (2023), 101975, 41 pp. | DOI | MR | Zbl
[3] Chen W., Ruan Y., “Orbifold Gromov–Witten theory”, Orbifolds in Mathematics and Physics, Contemp. Math., 310, American Mathematical Society, Providence, RI, 2002, 25–85, arXiv: math.AG/0103156 | DOI | MR | Zbl
[4] Cho C.-H., Poddar M., “Holomorphic orbi-discs and Lagrangian Floer cohomology of symplectic toric orbifolds”, J. Differential Geom., 98 (2014), 21–116, arXiv: 1206.3994 | DOI | MR | Zbl
[5] Floer A., “Morse theory for Lagrangian intersections”, J. Differential Geom., 28 (1988), 513–547 | DOI | MR | Zbl
[6] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, v. I, AMS/IP Stud. Adv. Math., 46.1, American Mathematical Society, Providence, RI, 2009 | DOI | MR
[7] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, v. II, AMS/IP Stud. Adv. Math., 46.2, American Mathematical Society, Providence, RI, 2009 | DOI | MR
[8] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Antisymplectic involution and Floer cohomology”, Geom. Topol., 21 (2017), 1–106, arXiv: 0912.2646 | DOI | MR | Zbl
[9] Fukaya K., Oh Y.-G., Ohta H., Ono K., “Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: I”, Surveys in Differential Geometry 2017, Surv. Differ. Geom., 22, International Press, Somerville, MA, 2018, 133–190, arXiv: 1710.01459 | DOI | MR
[10] Fukaya K., Oh Y.-G., Ohta H., Ono K., Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks: II, arXiv: 1808.06106
[11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Kuranishi structures and virtual fundamental chains, Springer Monogr. Math., Springer, Singapore, 2020 | DOI | MR | Zbl
[12] Fukaya K., Ono K., “Arnold conjecture and Gromov–Witten invariant”, Topology, 38 (1999), 933–1048 | DOI | MR | Zbl
[13] Li J., Tian G., “Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds”, Topics in Symplectic $4$-Manifolds, First Int. Press Lect. Ser. I, International Press, Cambridge, MA, 1998, 47–83, arXiv: alg-geom/9608032 | MR | Zbl
[14] Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Stud. Adv. Math., 91, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[15] Oh Y.-G., “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I”, Comm. Pure Appl. Math., 46 (1993), 949–993 | DOI | MR
[16] Oh Y.-G., “Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. II $({\mathbb C}{\rm P}^n,{\mathbb R}{\rm P}^n)$”, Comm. Pure Appl. Math., 46 (1993), 995–1012 | DOI | MR | Zbl
[17] Ono K., Sign convention for $A_{\infty}$-operations in Bott–Morse case, Preprint, available upon request
[18] Ruan Y., “Virtual neighborhoods and pseudo-holomorphic curves”, Turkish J. Math., 23 (1999), 161–231, arXiv: alg-geom/9611021 | MR | Zbl
[19] Ruan Y., Tian G., “A mathematical theory of quantum cohomology”, J. Differential Geom., 42 (1995), 259–367, arXiv: 1110.3751 | DOI | MR | Zbl
[20] Satake I., “The Gauss–Bonnet theorem for $V$-manifolds”, J. Math. Soc. Japan, 9 (1957), 464–492 | DOI | MR | Zbl
[21] Siebert B., “Symplectic Gromov–Witten invariants”, New Trends in Algebraic Geometry, London Math. Soc. Lecture Note Ser., 264, Cambridge University Press, Cambridge, 1999, 375–424, arXiv: dg-ga/9608005 | DOI | MR | Zbl