Computation of Infinitesimals for a Group Action on a Multispace of One Independent Variable
Symmetry, integrability and geometry: methods and applications, Tome 20 (2024) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper expands upon the work of Peter Olver's paper [Appl. Algebra Engrg. Comm. Comput. 11 (2001), 417–436], wherein Olver uses a moving frames approach to examine the action of a group on a curve within a generalization of jet space known as multispace. Here we seek to further study group actions on the multispace of curves by computing the infinitesimals for a given action. For the most part, we proceed formally, and produce in the multispace a recursion relation that closely mimics the previously known prolongation recursion relations for infinitesimals of a group action on jet space.
Keywords: symmetry methods, differential equations, numerical ordinary differential equations.
Mots-clés : jet space, multispace
@article{SIGMA_2024_20_a1,
     author = {Peter Rock},
     title = {Computation of {Infinitesimals} for a {Group} {Action} on a {Multispace} of {One} {Independent} {Variable}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2024},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a1/}
}
TY  - JOUR
AU  - Peter Rock
TI  - Computation of Infinitesimals for a Group Action on a Multispace of One Independent Variable
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2024
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a1/
LA  - en
ID  - SIGMA_2024_20_a1
ER  - 
%0 Journal Article
%A Peter Rock
%T Computation of Infinitesimals for a Group Action on a Multispace of One Independent Variable
%J Symmetry, integrability and geometry: methods and applications
%D 2024
%V 20
%U http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a1/
%G en
%F SIGMA_2024_20_a1
Peter Rock. Computation of Infinitesimals for a Group Action on a Multispace of One Independent Variable. Symmetry, integrability and geometry: methods and applications, Tome 20 (2024). http://geodesic.mathdoc.fr/item/SIGMA_2024_20_a1/

[1] de Boor C., “Divided differences”, Surv. Approx. Theory, 1 (2005), 46–69, arXiv: math.CA/0502036 | MR | Zbl

[2] Dorodnitsyn V., “Noether-type theorems for difference equations”, Appl. Numer. Math., 39 (2001), 307–321 | DOI | MR | Zbl

[3] Dorodnitsyn V., Kaptsov E., “Invariant finite-difference schemes for plane one-dimensional MHD flows that preserve conservation laws”, Mathematics, 10 (2022), 1250, 24 pp., arXiv: 2112.03118 | DOI

[4] Dorodnitsyn V., Kaptsov E., Kozlov R., Winternitz P., First integrals of ordinary difference equations beyond Lagrangian methods, arXiv: 1311.1597

[5] Fels M., Olver P.J., “Moving coframes. I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[6] Fels M., Olver P.J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[7] Kellison S.G., Fundamentals of numerical analysis, Richard D. Irwin, Inc., 1975

[8] Mansfield E.L., A practical guide to the invariant calculus, Cambridge Monogr. Appl. Comput. Math., 26, Cambridge University Press, Cambridge, 2010 | DOI | MR | Zbl

[9] Mansfield E.L., Rojo-Echeburúa A., Hydon P.E., Peng L., “Moving frames and Noether's finite difference conservation laws I”, Trans. Math. Appl., 3 (2019), tnz004, 47 pp., arXiv: 1804.00317 | DOI | MR | Zbl

[10] Mansfield E.L., Rojo-Echeburúa A., “Moving frames and Noether's finite difference conservation laws II”, Trans. Math. Appl., 3 (2019), tnz005, 26 pp., arXiv: 1808.03606 | DOI | MR | Zbl

[11] Marí Beffa G., Mansfield E.L., “Discrete moving frames on lattice varieties and lattice-based multispaces”, Found. Comput. Math., 18 (2018), 181–247 | DOI | MR | Zbl

[12] Olver P.J., Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer, New York, 1986 | DOI | MR | Zbl

[13] Olver P.J., “Geometric foundations of numerical algorithms and symmetry”, Appl. Algebra Engrg. Comm. Comput., 11 (2001), 417–436 | DOI | MR | Zbl

[14] Olver P.J., “Joint invariant signatures”, Found. Comput. Math., 1 (2001), 3–67 | DOI | MR | Zbl

[15] Olver P.J., “On multivariate interpolation”, Stud. Appl. Math., 116 (2006), 201–240 | DOI | MR | Zbl

[16] Tibshirani R.J., “Divided differences, falling factorials, and discrete splines: Another look at trend filtering and related problems”, Found. Trends Mach. Learn., 15 (2022), 694–846, arXiv: 2003.03886 | DOI

[17] Winternitz P., Dorodnitsyn V.A., Kaptsov E.I., Kozlov R.V., “First integrals of difference equations which do not posses a variational formulation”, Dokl. Math., 89 (2014), 106–109 | DOI | MR | Zbl

[18] Zandra M., Theoretical and numerical topics in the invariant calculus of variations, Ph.D. Thesis, University of Kent, 2020