An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution
Symmetry, integrability and geometry: methods and applications, Tome 16 (2020) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new explicit family of polynomials orthogonal on the unit circle with a dense point spectrum. This family is expressed in terms of $q$-hypergeometric function of type ${_2}\phi_1$. The orthogonality measure is the wrapped geometric distribution. Some “classical” properties of the above polynomials are presented.
Keywords: polynomials orthogonal on the unit circle, wrapped geometric dustribution, dense point spectrum.
@article{SIGMA_2020_16_a139,
     author = {Alexei Zhedanov},
     title = {An {Explicit} {Example} of {Polynomials} {Orthogonal} on the {Unit} {Circle} with a {Dense} {Point} {Spectrum} {Generated} by a {Geometric} {Distribution}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2020},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a139/}
}
TY  - JOUR
AU  - Alexei Zhedanov
TI  - An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2020
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a139/
LA  - en
ID  - SIGMA_2020_16_a139
ER  - 
%0 Journal Article
%A Alexei Zhedanov
%T An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution
%J Symmetry, integrability and geometry: methods and applications
%D 2020
%V 16
%U http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a139/
%G en
%F SIGMA_2020_16_a139
Alexei Zhedanov. An Explicit Example of Polynomials Orthogonal on the Unit Circle with a Dense Point Spectrum Generated by a Geometric Distribution. Symmetry, integrability and geometry: methods and applications, Tome 16 (2020). http://geodesic.mathdoc.fr/item/SIGMA_2020_16_a139/

[1] Askey R., “Comments to Gabor Szegő “Collected papers, Vol. 1””, Contemporary Mathematicians, Birkhäuser, Boston, Mass., 1982, 806–811 | MR

[2] Bannai E., Ito T., Algebraic combinatorics, v. I, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR | Zbl

[3] Costa M. S., Godoy E., Lamblém R.L., Sri Ranga A., “Basic hypergeometric functions and orthogonal Laurent polynomials”, Proc. Amer. Math. Soc., 140 (2012), 2075–2089 | DOI | MR | Zbl

[4] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[5] Geronimus Ya.L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Translation, 1954, 1954, 79 pp. | MR

[6] Grünbaum F. A., “The bispectral problem: an overview”, Special Functions 2000: Current Perspective and Future Directions, Tempe, AZ, NATO Sci. Ser. II Math. Phys. Chem., 30, eds. J. Bustoz, M.E.H. Ismail, S.K. Suslov, Kluwer Acad. Publ., Dordrecht, 2001, 129–140 | DOI | MR | Zbl

[7] Hendriksen E., van Rossum H., “Orthogonal Laurent polynomials”, Indag. Math., 89 (1986), 17–36 | DOI | MR

[8] Jacob S., Jayakumar K., “Wrapped geometric distribution: a new probability model for circular data”, J. Stat. Theory Appl., 12 (2013), 348–355 | DOI | MR

[9] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 ; earlier edition available at https://homepage.tudelft.nl/11r49/askey.html | DOI | MR | Zbl

[10] Lagendijk A., van Tiggelen B., Wiersma D., “Fifty years of Anderson localization”, Phys. Today, 62:8 (2009), 24–29 | DOI

[11] Leonard D. A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR | Zbl

[12] Lubinsky D. S., Saff E. B., “Convergence of Padé approximants of partial theta functions and the Rogers-Szegő polynomials”, Constr. Approx., 3 (1987), 331–361 | DOI | MR | Zbl

[13] Magnus A. P., “Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points”, J. Comput. Appl. Math., 65 (1995), 253–265 | DOI | MR | Zbl

[14] Magnus A. P., Semi-classical orthogonal polynomials on the unit circle, Preprint MAPA 3072A https://perso.uclouvain.be/alphonse.magnus/num3/m3xxx99.pdf

[15] Mardia K. V., Jupp P. E., Directional statistics, Wiley Series in Probability and Statistics, John Wiley Sons, Ltd., Chichester, 2000 | MR

[16] Pastro P. I., “Orthogonal polynomials and some $q$-beta integrals of Ramanujan”, J. Math. Anal. Appl., 112 (1985), 517–540 | DOI | MR | Zbl

[17] Simon B., Orthogonal polynomials on the unit circle, v. 1, American Mathematical Society Colloquium Publications, 54, Classical theory, Amer. Math. Soc., Providence, RI, 2005 | DOI | MR

[18] Spiridonov V., Zhedanov A., “Classical biorthogonal rational functions on elliptic grids”, C. R. Math. Acad. Sci. Soc. R. Can., 22 (2000), 70–76 | MR | Zbl

[19] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl

[20] Tsujimoto S., Vinet L., Zhedanov A., “An algebraic description of the bispectrality of the biorthogonal rational functions of Hahn type”, Proc. Amer. Math. Soc. (to appear) , arXiv: 2005.04217 | MR

[21] Tsujimoto S., Zhedanov A., “Elliptic hypergeometric Laurent biorthogonal polynomials with a dense point spectrum on the unit circle”, SIGMA, 5 (2009), 033, 30 pp., arXiv: 0809.2574 | DOI | MR | Zbl

[22] Vinet L., Zhedanov A., “Spectral transformations of the Laurent biorthogonal polynomials. II Pastro polynomials”, Canad. Math. Bull., 44 (2001), 337–345 | DOI | MR | Zbl

[23] Vinet L., Zhedanov A., A unified algebraic underpinning for the Hahn polynomials and rational functions, arXiv: 2009.05905 | MR

[24] Zhedanov A., “The “classical” Laurent biorthogonal polynomials”, J. Comput. Appl. Math., 98 (1998), 121–147 | DOI | MR | Zbl

[25] Zhedanov A., “Biorthogonal rational functions and the generalized eigenvalue problem”, J. Approx. Theory, 101 (1999), 303–329 | DOI | MR | Zbl

[26] Zhedanov A., “On the polynomials orthogonal on regular polygons”, J. Approx. Theory, 97 (1999), 1–14 | DOI | MR | Zbl

[27] Zhedanov A., “Elliptic polynomials orthogonal on the unit circle with a dense point spectrum”, Ramanujan J., 19 (2009), 351–384, arXiv: 0711.4696 | DOI | MR | Zbl