Relativistic DNLS and Kaup–Newell Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the recursion operator of the Kaup–Newell hierarchy we construct the relativistic derivative NLS (RDNLS) equation and the corresponding Lax pair. In the nonrelativistic limit $c \rightarrow \infty$ it reduces to DNLS equation and preserves integrability at any order of relativistic corrections. The compact explicit representation of the linear problem for this equation becomes possible due to notions of the $q$-calculus with two bases, one of which is the recursion operator, and another one is the spectral parameter.
Keywords: Kaup–Newell hierarchy; relativistic DNLS; $q$-calculus; recursion operator.
@article{SIGMA_2017_13_a57,
     author = {Oktay K. Pashaev and Jyh-Hao Lee},
     title = {Relativistic {DNLS} and {Kaup{\textendash}Newell} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a57/}
}
TY  - JOUR
AU  - Oktay K. Pashaev
AU  - Jyh-Hao Lee
TI  - Relativistic DNLS and Kaup–Newell Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a57/
LA  - en
ID  - SIGMA_2017_13_a57
ER  - 
%0 Journal Article
%A Oktay K. Pashaev
%A Jyh-Hao Lee
%T Relativistic DNLS and Kaup–Newell Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a57/
%G en
%F SIGMA_2017_13_a57
Oktay K. Pashaev; Jyh-Hao Lee. Relativistic DNLS and Kaup–Newell Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a57/

[1] Aglietti U., Griguolo L., Jackiw R., Pi S.-Y., Seminara D., “Anyons and chiral solitons on a line”, Phys. Rev. Lett., 77 (1996), 4406–4409, arXiv: hep-th/9606141 | DOI

[2] Francisco M. L.Y., Lee J.-H., Pashaev O. K., “Dissipative hierarchies and resonance solitons for KP-II and MKP-II”, Math. Comput. Simulation, 74 (2007), 323–332 | DOI | MR | Zbl

[3] Jackiw R., “A nonrelativistic chiral soliton in one dimension”, J. Nonlinear Math. Phys., 4 (1997), 261–270, arXiv: hep-th/9611185 | DOI | MR | Zbl

[4] Kaup D. J., Newell A. C., “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19 (1978), 798–801 | DOI | MR | Zbl

[5] Lee J.-H., “Global solvability of the derivative nonlinear Schrödinger equation”, Trans. Amer. Math. Soc., 314 (1989), 107–118 | DOI | MR | Zbl

[6] Lee J.-H., Lin C.-K., Pashaev O. K., “Equivalence relation and bilinear representation for derivative nonlinear Schrödinger type equations”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), World Sci. Publ., River Edge, NJ, 2000, 175–181 | DOI | MR | Zbl

[7] Lee J.-H., Pashaev O. K., “Soliton resonances for the MKP-II”, Theoret. and Math. Phys., 144 (2005), 995–1003, arXiv: hep-th/0410032 | DOI | MR | Zbl

[8] Lee J.-H., Pashaev O. K., “Chiral solitons in a quantum potential”, Theoret. and Math. Phys., 160 (2009), 986–994 | DOI | MR | Zbl

[9] Min H., Park Q.-H., “Scattering of solitons in the derivative nonlinear Schrödinger model”, Phys. Lett. B, 388 (1996), 621–625, arXiv: hep-th/9607242 | DOI | MR | Zbl

[10] Mio K., Ogino T., Minami K., Takeda S., “Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas”, J. Phys. Soc. Japan, 41 (1976), 265–271 | DOI | MR | Zbl

[11] Mjølhus E., “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16 (1976), 321–334 | DOI

[12] Pashaev O. K., “Relativistic nonlinear Schrödinger and Burgers equations”, Theoret. and Math. Phys., 160 (2009), 1022–1030, arXiv: 0901.1399 | DOI | MR | Zbl

[13] Pashaev O. K., Lee J.-H., “Black holes and solitons of the quantized dispersionless NLS and DNLS equations”, ANZIAM J., 44 (2002), 73–81 | DOI | MR | Zbl

[14] Yan Z., “Liouville integrable $N$-Hamiltonian structures, involutive solutions and separation of variables associated with Kaup–Newell hierarchy”, Chaos Solitons Fractals, 14 (2002), 45–56 | DOI | MR | Zbl