@article{SIGMA_2017_13_a57,
author = {Oktay K. Pashaev and Jyh-Hao Lee},
title = {Relativistic {DNLS} and {Kaup{\textendash}Newell} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a57/}
}
Oktay K. Pashaev; Jyh-Hao Lee. Relativistic DNLS and Kaup–Newell Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a57/
[1] Aglietti U., Griguolo L., Jackiw R., Pi S.-Y., Seminara D., “Anyons and chiral solitons on a line”, Phys. Rev. Lett., 77 (1996), 4406–4409, arXiv: hep-th/9606141 | DOI
[2] Francisco M. L.Y., Lee J.-H., Pashaev O. K., “Dissipative hierarchies and resonance solitons for KP-II and MKP-II”, Math. Comput. Simulation, 74 (2007), 323–332 | DOI | MR | Zbl
[3] Jackiw R., “A nonrelativistic chiral soliton in one dimension”, J. Nonlinear Math. Phys., 4 (1997), 261–270, arXiv: hep-th/9611185 | DOI | MR | Zbl
[4] Kaup D. J., Newell A. C., “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19 (1978), 798–801 | DOI | MR | Zbl
[5] Lee J.-H., “Global solvability of the derivative nonlinear Schrödinger equation”, Trans. Amer. Math. Soc., 314 (1989), 107–118 | DOI | MR | Zbl
[6] Lee J.-H., Lin C.-K., Pashaev O. K., “Equivalence relation and bilinear representation for derivative nonlinear Schrödinger type equations”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), World Sci. Publ., River Edge, NJ, 2000, 175–181 | DOI | MR | Zbl
[7] Lee J.-H., Pashaev O. K., “Soliton resonances for the MKP-II”, Theoret. and Math. Phys., 144 (2005), 995–1003, arXiv: hep-th/0410032 | DOI | MR | Zbl
[8] Lee J.-H., Pashaev O. K., “Chiral solitons in a quantum potential”, Theoret. and Math. Phys., 160 (2009), 986–994 | DOI | MR | Zbl
[9] Min H., Park Q.-H., “Scattering of solitons in the derivative nonlinear Schrödinger model”, Phys. Lett. B, 388 (1996), 621–625, arXiv: hep-th/9607242 | DOI | MR | Zbl
[10] Mio K., Ogino T., Minami K., Takeda S., “Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas”, J. Phys. Soc. Japan, 41 (1976), 265–271 | DOI | MR | Zbl
[11] Mjølhus E., “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16 (1976), 321–334 | DOI
[12] Pashaev O. K., “Relativistic nonlinear Schrödinger and Burgers equations”, Theoret. and Math. Phys., 160 (2009), 1022–1030, arXiv: 0901.1399 | DOI | MR | Zbl
[13] Pashaev O. K., Lee J.-H., “Black holes and solitons of the quantized dispersionless NLS and DNLS equations”, ANZIAM J., 44 (2002), 73–81 | DOI | MR | Zbl
[14] Yan Z., “Liouville integrable $N$-Hamiltonian structures, involutive solutions and separation of variables associated with Kaup–Newell hierarchy”, Chaos Solitons Fractals, 14 (2002), 45–56 | DOI | MR | Zbl