An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the so-called Clifford–Hermite polynomials in the framework of Dunkl operators, based on the theory of Clifford analysis. Several properties of these polynomials are obtained, such as a Rodrigues formula, a differential equation and an explicit relation connecting them with the generalized Laguerre polynomials. A link is established with the generalized Hermite polynomials related to the Dunkl operators (see [Rösler M., Comm. Math. Phys. 192 (1998), 519–542, q-alg/9703006]) as well as with the basis of the weighted $L^2$ space introduced by Dunkl.
Keywords: Hermite polynomials; Dunkl operators; Clifford analysis.
@article{SIGMA_2008_4_a92,
     author = {Hendrik De Bie},
     title = {An {Alternative} {Definition} of the {Hermite} {Polynomials} {Related} to the {Dunkl} {Laplacian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a92/}
}
TY  - JOUR
AU  - Hendrik De Bie
TI  - An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a92/
LA  - en
ID  - SIGMA_2008_4_a92
ER  - 
%0 Journal Article
%A Hendrik De Bie
%T An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a92/
%G en
%F SIGMA_2008_4_a92
Hendrik De Bie. An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a92/

[1] Ben Sa{ï}d S., “On the integrability of a representation of $\mathfrak{sl}(2,\mathbb R)$”, J. Funct. Anal., 250 (2007), 249–264 | DOI | MR | Zbl

[2] Ben Sa{ï}d S., Ørsted B., “Segal–{B}argmann transforms associated with finite Coxeter groups”, Math. Ann., 334 (2006), 281–323 | DOI | MR | Zbl

[3] Brackx F., Delanghe R., Sommen F., Clifford analysis, Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA, 1982 | MR | Zbl

[4] Brackx F., de Schepper N., Sommen F., “The higher dimensional Hermite transform: a new approach”, Complex Var. Theory Appl., 48 (2003), 189–210 | MR | Zbl

[5] Brackx F., Sommen F., “Clifford–Hermite wavelets in Euclidean space”, J. Fourier Anal. Appl., 6 (2000), 299–310 | DOI | MR | Zbl

[6] Cerejeiras P., Kähler U., Ren G., “Clifford analysis for finite reflection groups”, Complex Var. Elliptic Equ., 51 (2006), 487–495 | DOI | MR | Zbl

[7] De Bie H., “Fourier transform and related integral transforms in superspace”, J. Math. Anal. Appl., 345 (2008), 147–164 ; arXiv:0805.1918 | DOI | MR | Zbl

[8] De Bie H., Sommen F., “Hermite and Gegenbauer polynomials in superspace using Clifford analysis”, J. Phys. A: Math. Theor., 40 (2007), 10441–10456 ; arXiv:0707.2863 | DOI | MR | Zbl

[9] De Bie H., Sommen F., “Spherical harmonics and integration in superspace”, J. Phys. A: Math. Theor., 40 (2007), 7193–7212 ; arXiv:0705.3148 | DOI | MR | Zbl

[10] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl

[11] Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued functions, Mathematics and Its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992 | MR | Zbl

[12] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[13] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Proc. of the Special Session on Hypergeometric Functions on Domains of Positivity, Jack polynomials and Applications (Tampa 1991), Contemp. Math., 138, 1992, 123–138 | MR | Zbl

[14] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[15] Fueter R., “Die Funktionentheorie der Differentialgleichungen $\Delta u=0$ und $\Delta\Delta u=0$ mit vier reellen Variablen”, Comment. Math. Helv., 7 (1934), 307–330 | DOI | MR

[16] Gilbert J. E., Murray M. A. M., Clifford algebras and Dirac operators in harmonic analysis, Cambridge Studies in Advanced Mathematics, 26, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[17] Heckman G. J., “A remark on the Dunkl differential-difference operators”, Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progress in Math., 101, eds. W. Barker and P. Sally, Birkhäuser Boston, Boston, MA, 1991, 181–191 | MR

[18] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[19] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[20] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 ; q-alg/9703006 | DOI | MR | Zbl

[21] Sommen F., “Monogenic functions on surfaces”, J. Reine Angew. Math., 361 (1985), 145–161 | MR | Zbl

[22] Sommen F., “On a generalization of Fueter's theorem”, Z. Anal. Anwendungen, 19 (2000), 899–902 | MR | Zbl

[23] Sommen F., “Special functions in Clifford analysis and axial symmetry”, J. Math. Anal. Appl., 130 (1988), 110–133 | DOI | MR | Zbl

[24] Xu Y., “Harmonic polynomials associated with reflection groups”, Canad. Math. Bull., 43 (2000), 496–507 | MR | Zbl