@article{SIGMA_2008_4_a91,
author = {Fethi Soltani},
title = {Sonine {Transform} {Associated} to the {Dunkl} {Kernel} on the {Real} {Line}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a91/}
}
Fethi Soltani. Sonine Transform Associated to the Dunkl Kernel on the Real Line. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a91/
[1] Baccar C., Hamadi N. B., Rachdi L. T., “Inversion formulas for Riemann–Liouville transform and its dual associated with singular partial differential operators”, Int. J. Math. Math. Sci., 2006 (2006), Art. ID 86238, 26 pp., ages | DOI | MR
[2] Dunkl C. F., “Differential-difference operators associated with reflections groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[3] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | MR | Zbl
[4] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Contemp. Math., 138, 1992, 123–138 | MR | Zbl
[5] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl
[6] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452 ; q-alg/9509003 | DOI | MR | Zbl
[7] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl
[8] Ludwig D., “The Radon transform on Euclidean space”, Comm. Pure. App. Math., 23 (1966), 49–81 | MR
[9] Nessibi M. M., Rachdi L. T., “Trimèche K., Ranges and inversion formulas for spherical mean operator and its dual”, J. Math. Anal. Appl., 196 (1995), 861–884 | DOI | MR | Zbl
[10] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 ; math.CA/9307224 | MR | Zbl
[11] Rösler M., “Bessel-type signed hypergroups on $\mathbb R$”, Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), eds. H. Heyer and A. Mukherjea, World Sci. Publ., River Edge, NJ, 1995, 292–304 | MR | Zbl
[12] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 ; q-alg/9703006 | DOI | MR | Zbl
[13] Samko S. G., Hypersingular integrals and their applications, Analytical Methods and Special Functions, 5, Taylor Francis, Ltd., London, 2002 | MR | Zbl
[14] Solmon D. C., “Asymptotic formulas for the dual Radon transform and applications”, Math. Z., 195 (1987), 321–343 | DOI | MR | Zbl
[15] Soltani F., Trimèche K., The Dunkl intertwining operator and its dual on $\mathbb R$ and applications, Preprint, Faculty of Sciences of Tunis, Tunisia, 2000
[16] Stein E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | MR
[17] Trimèche K., “Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur $(0,\infty)$”, J. Math. Pures Appl. (9), 60 (1981), 51–98 | MR | Zbl
[18] Trimèche K., “The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual”, Integral Transform. Spec. Funct., 12 (2001), 349–374 | DOI | MR | Zbl
[19] Trimèche K., “Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl
[20] Xu Y., “An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials”, Adv. in Appl. Math., 29 (2002), 328–343 | DOI | MR | Zbl