Sonine Transform Associated to the Dunkl Kernel on the Real Line
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Dunkl intertwining operator $V_\alpha$ and its dual ${}^tV_\alpha$, we define and study the Dunkl Sonine operator and its dual on $\mathbb R$. Next, we introduce complex powers of the Dunkl Laplacian $\Delta_\alpha$ and establish inversion formulas for the Dunkl Sonine operator $S_{\alpha,\beta}$ and its dual ${}^tS_{\alpha,\beta}$. Also, we give a Plancherel formula for the operator ${}^tS_{\alpha,\beta}$.
Keywords: Dunkl intertwining operator; Dunkl transform; Dunkl Sonine transform; complex powers of the Dunkl Laplacian.
@article{SIGMA_2008_4_a91,
     author = {Fethi Soltani},
     title = {Sonine {Transform} {Associated} to the {Dunkl} {Kernel} on the {Real} {Line}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a91/}
}
TY  - JOUR
AU  - Fethi Soltani
TI  - Sonine Transform Associated to the Dunkl Kernel on the Real Line
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a91/
LA  - en
ID  - SIGMA_2008_4_a91
ER  - 
%0 Journal Article
%A Fethi Soltani
%T Sonine Transform Associated to the Dunkl Kernel on the Real Line
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a91/
%G en
%F SIGMA_2008_4_a91
Fethi Soltani. Sonine Transform Associated to the Dunkl Kernel on the Real Line. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a91/

[1] Baccar C., Hamadi N. B., Rachdi L. T., “Inversion formulas for Riemann–Liouville transform and its dual associated with singular partial differential operators”, Int. J. Math. Math. Sci., 2006 (2006), Art. ID 86238, 26 pp., ages | DOI | MR

[2] Dunkl C. F., “Differential-difference operators associated with reflections groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[3] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | MR | Zbl

[4] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Contemp. Math., 138, 1992, 123–138 | MR | Zbl

[5] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl

[6] Lapointe L., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452 ; q-alg/9509003 | DOI | MR | Zbl

[7] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl

[8] Ludwig D., “The Radon transform on Euclidean space”, Comm. Pure. App. Math., 23 (1966), 49–81 | MR

[9] Nessibi M. M., Rachdi L. T., “Trimèche K., Ranges and inversion formulas for spherical mean operator and its dual”, J. Math. Anal. Appl., 196 (1995), 861–884 | DOI | MR | Zbl

[10] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 ; math.CA/9307224 | MR | Zbl

[11] Rösler M., “Bessel-type signed hypergroups on $\mathbb R$”, Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), eds. H. Heyer and A. Mukherjea, World Sci. Publ., River Edge, NJ, 1995, 292–304 | MR | Zbl

[12] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 ; q-alg/9703006 | DOI | MR | Zbl

[13] Samko S. G., Hypersingular integrals and their applications, Analytical Methods and Special Functions, 5, Taylor Francis, Ltd., London, 2002 | MR | Zbl

[14] Solmon D. C., “Asymptotic formulas for the dual Radon transform and applications”, Math. Z., 195 (1987), 321–343 | DOI | MR | Zbl

[15] Soltani F., Trimèche K., The Dunkl intertwining operator and its dual on $\mathbb R$ and applications, Preprint, Faculty of Sciences of Tunis, Tunisia, 2000

[16] Stein E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970 | MR

[17] Trimèche K., “Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur $(0,\infty)$”, J. Math. Pures Appl. (9), 60 (1981), 51–98 | MR | Zbl

[18] Trimèche K., “The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual”, Integral Transform. Spec. Funct., 12 (2001), 349–374 | DOI | MR | Zbl

[19] Trimèche K., “Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl

[20] Xu Y., “An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials”, Adv. in Appl. Math., 29 (2002), 328–343 | DOI | MR | Zbl