@article{SIGMA_2008_4_a90,
author = {H. Volkmer},
title = {External {Ellipsoidal} {Harmonics} for the {Dunkl{\textendash}Laplacian}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a90/}
}
H. Volkmer. External Ellipsoidal Harmonics for the Dunkl–Laplacian. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a90/
[1] Arscott F. M., Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, International Series of Monographs in Pure and Applied Mathematics, 66, A Pergamon Press Book, The Macmillan Co., New York, 1964 | MR | Zbl
[2] Ben Sa\"id S., Ørsted B., “The wave equation for Dunkl operators”, Indag. Math. (N.S.), 16 (2005), 351–391 | DOI | MR | Zbl
[3] Blimke J., Myklebust J., Volkmer H., Merrill S., “Four-shell ellipsoidal model employing multipole expansion in ellipsoidal coordinates”, Med. Biol. Eng. Comput., 46 (2008), 859–869 | DOI
[4] Dassios G., “The magnetic potential for the ellipsoidal MEG problem”, J. Comput. Math., 25 (2007), 145–156 | MR
[5] Dassios G., Kariotou F., “Magnetoencephalography in ellipsoidal geometry”, J. Math. Phys., 44 (2003), 220–241 | DOI | MR | Zbl
[6] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl
[7] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl
[8] Dunkl C. F., “A Laguerre polynomial orthogonality and the hydrogen atom”, Anal. Appl. (Singap.), 1 (2003), 177–188 ; math-ph/0011021 | DOI | MR | Zbl
[9] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[10] Evans L., Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998 | MR | Zbl
[11] Heine E., Handbuch der Kugelfunktionen, Vol. 1, G. Reimer Verlag, Berlin, 1878 | Zbl
[12] Heine E., Handbuch der Kugelfunktionen, Vol. 2, G. Reimer Verlag, Berlin, 1881 | Zbl
[13] Hikami K., “Boundary $K$-matrix, elliptic Dunkl operator and quantum many-body systems”, J. Phys. A: Math. Gen., 29 (1996), 2135–2147 | DOI | MR | Zbl
[14] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Cambridge University Press, Cambridge, 1931
[15] Kalnins E. G., Miller W. Jr., “Jacobi elliptic coordinates, functions of Heun and Lamé type and the Niven transform”, Regul. Chaotic Dyn., 10 (2005), 487–508 | DOI | MR | Zbl
[16] Niven W. D., “On ellipsoidal harmonics”, Phil. Trans. Royal Society London A, 182 (1891), 231–278 | DOI
[17] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 ; math.CA/0210366 | MR | Zbl
[18] Rösler M., Voit M., “Markov processes related with Dunkl operators”, Adv. in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl
[19] Stieltjes T. J., “Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé”, Acta Math., 5 (1885), 321–326 | DOI | MR
[20] Szegő G., Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975 | MR
[21] Volkmer H., “Generalized ellipsoidal and sphero-conal harmonics”, SIGMA, 2 (2006), 071, 16 pp., ages ; math.CA/0610718 | MR | Zbl
[22] Whittaker E. T., Watson G. N., A course in modern analysis, Cambridge University Press, Cambridge, 1927
[23] Xu Y., “Orthogonal polynomials for a family of product weight functions on the spheres”, Canad. J. Math., 49 (1997), 175–192 | MR | Zbl