External Ellipsoidal Harmonics for the Dunkl–Laplacian
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper introduces external ellipsoidal and external sphero-conal $h$-harmonics for the Dunkl–Laplacian. These external $h$-harmonics admit integral representations, and they are connected by a formula of Niven's type. External $h$-harmonics in the plane are expressed in terms of Jacobi polynomials $P_n^{\alpha,\beta}$ and Jacobi's functions $Q_n^{\alpha,\beta}$ of the second kind.
Keywords: external ellipsoidal harmonics; Stieltjes polynomials; Dunkl–Laplacian; fundamental solution; NivenвЂTMs formula; JacobiвЂTMs function of the second kind.
@article{SIGMA_2008_4_a90,
     author = {H. Volkmer},
     title = {External {Ellipsoidal} {Harmonics} for the {Dunkl{\textendash}Laplacian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a90/}
}
TY  - JOUR
AU  - H. Volkmer
TI  - External Ellipsoidal Harmonics for the Dunkl–Laplacian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a90/
LA  - en
ID  - SIGMA_2008_4_a90
ER  - 
%0 Journal Article
%A H. Volkmer
%T External Ellipsoidal Harmonics for the Dunkl–Laplacian
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a90/
%G en
%F SIGMA_2008_4_a90
H. Volkmer. External Ellipsoidal Harmonics for the Dunkl–Laplacian. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a90/

[1] Arscott F. M., Periodic differential equations. An introduction to Mathieu, Lamé, and allied functions, International Series of Monographs in Pure and Applied Mathematics, 66, A Pergamon Press Book, The Macmillan Co., New York, 1964 | MR | Zbl

[2] Ben Sa\"id S., Ørsted B., “The wave equation for Dunkl operators”, Indag. Math. (N.S.), 16 (2005), 351–391 | DOI | MR | Zbl

[3] Blimke J., Myklebust J., Volkmer H., Merrill S., “Four-shell ellipsoidal model employing multipole expansion in ellipsoidal coordinates”, Med. Biol. Eng. Comput., 46 (2008), 859–869 | DOI

[4] Dassios G., “The magnetic potential for the ellipsoidal MEG problem”, J. Comput. Math., 25 (2007), 145–156 | MR

[5] Dassios G., Kariotou F., “Magnetoencephalography in ellipsoidal geometry”, J. Math. Phys., 44 (2003), 220–241 | DOI | MR | Zbl

[6] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl

[7] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl

[8] Dunkl C. F., “A Laguerre polynomial orthogonality and the hydrogen atom”, Anal. Appl. (Singap.), 1 (2003), 177–188 ; math-ph/0011021 | DOI | MR | Zbl

[9] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[10] Evans L., Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998 | MR | Zbl

[11] Heine E., Handbuch der Kugelfunktionen, Vol. 1, G. Reimer Verlag, Berlin, 1878 | Zbl

[12] Heine E., Handbuch der Kugelfunktionen, Vol. 2, G. Reimer Verlag, Berlin, 1881 | Zbl

[13] Hikami K., “Boundary $K$-matrix, elliptic Dunkl operator and quantum many-body systems”, J. Phys. A: Math. Gen., 29 (1996), 2135–2147 | DOI | MR | Zbl

[14] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Cambridge University Press, Cambridge, 1931

[15] Kalnins E. G., Miller W. Jr., “Jacobi elliptic coordinates, functions of Heun and Lamé type and the Niven transform”, Regul. Chaotic Dyn., 10 (2005), 487–508 | DOI | MR | Zbl

[16] Niven W. D., “On ellipsoidal harmonics”, Phil. Trans. Royal Society London A, 182 (1891), 231–278 | DOI

[17] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 ; math.CA/0210366 | MR | Zbl

[18] Rösler M., Voit M., “Markov processes related with Dunkl operators”, Adv. in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl

[19] Stieltjes T. J., “Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé”, Acta Math., 5 (1885), 321–326 | DOI | MR

[20] Szegő G., Orthogonal polynomials, 4th ed., American Mathematical Society, Providence, R.I., 1975 | MR

[21] Volkmer H., “Generalized ellipsoidal and sphero-conal harmonics”, SIGMA, 2 (2006), 071, 16 pp., ages ; math.CA/0610718 | MR | Zbl

[22] Whittaker E. T., Watson G. N., A course in modern analysis, Cambridge University Press, Cambridge, 1927

[23] Xu Y., “Orthogonal polynomials for a family of product weight functions on the spheres”, Canad. J. Math., 49 (1997), 175–192 | MR | Zbl