@article{SIGMA_2008_4_a89,
author = {Vincent Caudrelier and Nicolas Cramp\'e},
title = {Symmetries of {Spin} {Calogero} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a89/}
}
Vincent Caudrelier; Nicolas Crampé. Symmetries of Spin Calogero Models. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a89/
[1] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[2] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 ; Calogero F., “Ground state of a one-dimensional $N$-body system”, J. Math. Phys., 10 (1969), 2197–2200 ; Calogero F., “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 ; Erratum J. Math. Phys., 37 (1996), 3646 | DOI | MR | DOI | DOI | MR | DOI | MR | Zbl
[3] Sutherland B., “Quantum many-body problem in one dimension: ground state”, J. Math. Phys., 12 (1971), 246–250 | DOI
[4] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[5] Polychronakos A. P., “Exchange operator formalism for integrable systems of particles”, Phys. Rev. Lett., 69, 703–705 | DOI | MR | Zbl
[6] Minahan J. A., Polychronakos A. P., “Integrable systems for particles with internal degrees of freedom”, Phys. Lett. B, 302 (1993), 265–270 ; hep-th/9206046 | DOI | MR
[7] Hikami K., Wadati M., “Integrability of Calogero–Moser spin system”, J. Phys. Soc. Japan, 62 (1993), 469–472 | DOI | MR | Zbl
[8] Bernard D., Gaudin M., Haldane F. D. M., Pasquier V., “Yang–Baxter equation in long-range interacting systems”, J. Phys. A: Math. Gen., 26 (1993), 5219–5236 ; hep-th/9301084 | DOI | MR | Zbl
[9] Faddeev L. D., Reshetikhin N. Y., Takhtajan L. A., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl
[10] Drinfel'd V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Sov. Math. Dokl., 32 (1985), 254–258 ; Drinfel'd V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR | MR
[11] Takemura K., Uglov D., “The orthogonal eigenbasis and norms of eigenvectors in the spin Calogero–Sutherland model”, J. Phys. A: Math. Gen., 30 (1997), 3685–3717 ; solv-int/9611006 | DOI | MR | Zbl
[12] Takemura K., “The Yangian symmetry in the spin Calogero model and its applications”, J. Phys. A: Math. Gen., 30 (1997), 6185–6204 ; solv-int/9701015 | DOI | MR
[13] Uglov D., “Yangian Gelfand–Zetlin bases, ${\mathfrak gl}_N$-Jack polynomials and computation of dynamical correlation functions in the spin Calogero–Sutherland model”, Comm. Math. Phys., 191 (1998), 663–696 ; hep-th/9702020 | DOI | MR | Zbl
[14] Ha Z. N. C., Haldane F. D. M., “On models with inverse-square exchange”, Phys. Rev. B, 46 (1992), 9359–9368 ; cond-mat/9204017 | DOI
[15] Haldane F. D. M., Ha Z. N. C., Talstra J. C., Bernard D., Pasquier V., “Yangian symmetry of integrable quantum chains with long-range interactions and a new description of states in conformal field theory”, Phys. Rev. Lett., 69 (1992), 2021–2025 | DOI | MR | Zbl
[16] Bernard D., Pasquier V., Serban D., A one dimensional ideal gas of spinons, or some exact results on the XXX spin chain with long range interaction, hep-th/9311013 | MR
[17] Hikami K., “Yangian symmetry and Virasoro character in a lattice spin system with long-range interactions”, Nuclear Phys. B, 441 (1995), 530–548 | DOI | MR | Zbl
[18] Murakami S., Wadati M., “Connection between Yangian symmetry and the quantum inverse scattering method”, J. Phys. A: Math. Gen., 29 (1996), 7903–7915 | DOI | MR | Zbl
[19] Mintchev M., Ragoucy E., Sorba P., Zaugg Ph., “Yangian symmetry in the nonlinear Schrödinger hierarchy”, J. Phys. A: Math. Gen., 32 (1999), 5885–5900 ; hep-th/9905105 | DOI | MR | Zbl
[20] Uglov D. B., Korepin V. E., “The Yangian symmetry of the Hubbard model”, Phys. Lett. A, 190 (1994), 238–242 ; hep-th/9310158 | DOI | MR
[21] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[22] Caudrelier V., Crampé N., “Integrable $N$-particle Hamiltonians with Yangian or reflection algebra symmetry”, J. Phys. A: Math. Gen., 7 (2004), 6285–6298 ; math-ph/0310028 | DOI | MR
[23] Humphreys J. H., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[24] Belavin A. A., Drinfel'd V. G., “Solutions of the classical Yang–Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16 (1982), 159–180 ; Belavin A. A., Drinfel'd V. G. “Classical Yang–Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 17 (1983), 220–221 ; Belavin A. A., Drinfel'd V. G., “Triangle equation and simple Lie algebras”, Soviet Sci. Rev. Sect. C Math. Phys. Rev., Mathematical Physics Reviews, 4, Harwood Academic Publ., Chur, 1984, 93–165 | DOI | MR | DOI | MR | Zbl | MR
[25] Crampé N., Young C. A. S., “Integrable models from twisted half-loop algebras”, J. Phys. A: Math. Theor., 40 (2007), 5491–5509 ; math-ph/0609057 | DOI | MR | Zbl
[26] Yamamoto T., “Multicomponent Calogero model of $B_N$-type confined in a harmonic potential”, Phys. Lett. A, 208 (1995), 293–302 ; cond-mat/9508012 | DOI | MR | Zbl
[27] Inozemtsev V. I., Sasaki R., “Universal Lax pairs for spin Calogero–Moser models and spin exchange models”, J. Phys. A: Math. Gen., 34 (2001), 7621–7632 ; hep-th/0106164 | DOI | MR | Zbl
[28] Quesne C., “An exactly solvable three-particle problem with three-body interaction”, Phys. Rev. A, 55 (1997), 3931–3934 ; hep-th/9612173 | DOI | MR
[29] Nazarov M., Tarasov V., “Yangians and Gelfand–Zetlin bases”, Publ. Res. Inst. Math. Sci., 30 (1994), 459–478 ; hep-th/9302102 | DOI | MR | Zbl
[30] Talalaev D., Quantization of the Gaudin system, hep-th/0404153