A Probablistic Origin for a New Class of Bivariate Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present here a probabilistic approach to the generation of new polynomials in two discrete variables. This extends our earlier work on the “classical” orthogonal polynomials in a previously unexplored direction, resulting in the discovery of an exactly soluble eigenvalue problem corresponding to a bivariate Markov chain with a transition kernel formed by a convolution of simple binomial and trinomial distributions. The solution of the relevant eigenfunction problem, giving the spectral resolution of the kernel, leads to what we believe to be a new class of orthogonal polynomials in two discrete variables. Possibilities for the extension of this approach are discussed.
Mots-clés : cumulative Bernoulli trials; multivariate Markov chains; $9-j$ symbols; transition kernel; Askey–Wilson polynomials; eigenvalue problem; trinomial distribution; Krawtchouk polynomials.
@article{SIGMA_2008_4_a88,
     author = {Michael R. Hoare and Mizan Rahman},
     title = {A~Probablistic {Origin} for {a~New} {Class} of {Bivariate} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a88/}
}
TY  - JOUR
AU  - Michael R. Hoare
AU  - Mizan Rahman
TI  - A Probablistic Origin for a New Class of Bivariate Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a88/
LA  - en
ID  - SIGMA_2008_4_a88
ER  - 
%0 Journal Article
%A Michael R. Hoare
%A Mizan Rahman
%T A Probablistic Origin for a New Class of Bivariate Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a88/
%G en
%F SIGMA_2008_4_a88
Michael R. Hoare; Mizan Rahman. A Probablistic Origin for a New Class of Bivariate Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a88/

[1] Aomoto K., Kita M., Theory of hypergeometric functions, Springer, Tokyo, 1994 (in Japanese)

[2] Askey R., Wilson J. A., “A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl

[3] Askey R., Wilson J. A., “A set of hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 13 (1982), 651–655 | DOI | MR | Zbl

[4] Askey R., Wilson J. A., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985, 55 | MR

[5] Bailey W. N., Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935; reprinted by Stechert-Hafner, New York, 1964

[6] Cooper R. D., Hoare M. R., Rahman M., “Stochastic processes and special functions: on the probabilistic origin of some positive kernels associated with classical orthogonal polynomials”, J. Math. Anal. Appl., 61 (1977), 262–291 | DOI | MR | Zbl

[7] Edmonds A. R., Angular momentum in quantum mechanics, 2nd ed., Princeton University Press, Princeton, New Jersey, 1960 | MR

[8] Erdélyi et. al., Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953

[9] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[10] Griffiths R. C., “Orthogonal polynomials on the multinomial distribution Corregenda”, Austral. J. Statist., 13 (1971), 27–35 ; Austral. J. Statist., 14 (1972), 270 | DOI | MR | Zbl | DOI | Zbl

[11] Griffiths R. C., “Orthogonal polynomials on the negative multinomial distribution”, J. Multivariate Anal., 5 (1975), 271–277 | DOI | MR | Zbl

[12] Griffiths R. C., Orthogonal polynomials on the multinomial, Notes: Version 3.0, 04/09/2006, unpublished (Private communication)

[13] Hahn W., “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nachr., 2 (1949), 4–34 | DOI | MR | Zbl

[14] Hoare M. R., Rahman M., “Cumulative Bernoulli trials and Krawtchouk processes”, Stochastic Process. Appl., 16 (1983), 113–139 | DOI | MR

[15] Hoare M. R., Rahman M., “Cumulative hypergeometric processes: a statistical role for the $_nF_{n-1}$ functions”, J. Math. Anal. Appl., 135 (1988), 615–626 | DOI | MR | Zbl

[16] Hoare M. R., Rahman M., “Distributive processes in discrete systems”, Phys. A, 97 (1979), 1–41 | DOI | MR

[17] Mizukawa H., “Zonal spherical functions on the complex reflection groups and $(n+1,m+1)$-hypergeometric functions”, Adv. Math., 184 (2004), 1–17 | DOI | MR | Zbl

[18] Racah G., “Theory of complex spectra. II”, Phys. Rev., 62 (1942), 438–462 | DOI

[19] Rahman M., “Discrete orthogonal systems corresponding to Dirichlet distribution”, Utilitas Math., 20 (1981), 261–272 | MR | Zbl

[20] Tratnik M. V., “Some multivariable orthogonal polynomials of the Askey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl

[21] Whipple F. J. W., “Well-poised series and other generalized hypergeometric series”, Proc. Lond. Math. Soc. (2), 25 (1926), 525–544 | DOI | Zbl

[22] Wilson J. A., Hypergeometric series, recurrence relations and some new orthogonal functions, Thesis, Univ. of Wisconsin, Madison, 1978

[23] Wilson J. A., “Some hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 11 (1980), 690–701 | DOI | MR | Zbl

[24] Zhedanov A., “$9j$-symbols of the oscillator algebra and Krawtchouk polynomials in two variables”, J. Phys. A: Math. Gen., 30 (1997), 8337–8353 | DOI | MR | Zbl