@article{SIGMA_2008_4_a88,
author = {Michael R. Hoare and Mizan Rahman},
title = {A~Probablistic {Origin} for {a~New} {Class} of {Bivariate} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a88/}
}
Michael R. Hoare; Mizan Rahman. A Probablistic Origin for a New Class of Bivariate Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a88/
[1] Aomoto K., Kita M., Theory of hypergeometric functions, Springer, Tokyo, 1994 (in Japanese)
[2] Askey R., Wilson J. A., “A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl
[3] Askey R., Wilson J. A., “A set of hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 13 (1982), 651–655 | DOI | MR | Zbl
[4] Askey R., Wilson J. A., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., no. 319, 1985, 55 | MR
[5] Bailey W. N., Generalized hypergeometric series, Cambridge University Press, Cambridge, 1935; reprinted by Stechert-Hafner, New York, 1964
[6] Cooper R. D., Hoare M. R., Rahman M., “Stochastic processes and special functions: on the probabilistic origin of some positive kernels associated with classical orthogonal polynomials”, J. Math. Anal. Appl., 61 (1977), 262–291 | DOI | MR | Zbl
[7] Edmonds A. R., Angular momentum in quantum mechanics, 2nd ed., Princeton University Press, Princeton, New Jersey, 1960 | MR
[8] Erdélyi et. al., Higher transcendental functions, Vol. I, McGraw-Hill, New York, 1953
[9] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[10] Griffiths R. C., “Orthogonal polynomials on the multinomial distribution Corregenda”, Austral. J. Statist., 13 (1971), 27–35 ; Austral. J. Statist., 14 (1972), 270 | DOI | MR | Zbl | DOI | Zbl
[11] Griffiths R. C., “Orthogonal polynomials on the negative multinomial distribution”, J. Multivariate Anal., 5 (1975), 271–277 | DOI | MR | Zbl
[12] Griffiths R. C., Orthogonal polynomials on the multinomial, Notes: Version 3.0, 04/09/2006, unpublished (Private communication)
[13] Hahn W., “Über Orthogonalpolynome, die $q$-Differenzengleichungen genügen”, Math. Nachr., 2 (1949), 4–34 | DOI | MR | Zbl
[14] Hoare M. R., Rahman M., “Cumulative Bernoulli trials and Krawtchouk processes”, Stochastic Process. Appl., 16 (1983), 113–139 | DOI | MR
[15] Hoare M. R., Rahman M., “Cumulative hypergeometric processes: a statistical role for the $_nF_{n-1}$ functions”, J. Math. Anal. Appl., 135 (1988), 615–626 | DOI | MR | Zbl
[16] Hoare M. R., Rahman M., “Distributive processes in discrete systems”, Phys. A, 97 (1979), 1–41 | DOI | MR
[17] Mizukawa H., “Zonal spherical functions on the complex reflection groups and $(n+1,m+1)$-hypergeometric functions”, Adv. Math., 184 (2004), 1–17 | DOI | MR | Zbl
[18] Racah G., “Theory of complex spectra. II”, Phys. Rev., 62 (1942), 438–462 | DOI
[19] Rahman M., “Discrete orthogonal systems corresponding to Dirichlet distribution”, Utilitas Math., 20 (1981), 261–272 | MR | Zbl
[20] Tratnik M. V., “Some multivariable orthogonal polynomials of the Askey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl
[21] Whipple F. J. W., “Well-poised series and other generalized hypergeometric series”, Proc. Lond. Math. Soc. (2), 25 (1926), 525–544 | DOI | Zbl
[22] Wilson J. A., Hypergeometric series, recurrence relations and some new orthogonal functions, Thesis, Univ. of Wisconsin, Madison, 1978
[23] Wilson J. A., “Some hypergeometric orthogonal polynomials”, SIAM J. Math. Anal., 11 (1980), 690–701 | DOI | MR | Zbl
[24] Zhedanov A., “$9j$-symbols of the oscillator algebra and Krawtchouk polynomials in two variables”, J. Phys. A: Math. Gen., 30 (1997), 8337–8353 | DOI | MR | Zbl