Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work it is shown that a necessary condition for the completeness of the geodesics of left invariant pseudo-Riemannian metrics on Lie groups is also sufficient in the case of 3-dimensional unimodular Lie groups, and not sufficient for 3-dimensional non unimodular Lie groups. As a consequence it is possible to identify, amongst the compact locally homogeneous Lorentzian 3-manifolds with non compact (local) isotropy group, those that are geodesically complete.
Keywords: Lorentzian metrics; complete geodesics; 3-dimensional Lie groups
Mots-clés : Euler equation.
@article{SIGMA_2008_4_a87,
     author = {Shirley Bromberg and Alberto Medina},
     title = {Geodesically {Complete} {Lorentzian} {Metrics} on {Some} {Homogeneous} {3~Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a87/}
}
TY  - JOUR
AU  - Shirley Bromberg
AU  - Alberto Medina
TI  - Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a87/
LA  - en
ID  - SIGMA_2008_4_a87
ER  - 
%0 Journal Article
%A Shirley Bromberg
%A Alberto Medina
%T Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a87/
%G en
%F SIGMA_2008_4_a87
Shirley Bromberg; Alberto Medina. Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a87/

[1] Bromberg S., Medina A., “Complétude de l'équation d'Euler”, Proceedings of the Colloquium in Tashkent “Algebra and Operator Theory” (September 29 – October 5, 1997, Tashkent), eds. Y. Khakimdjanov, M. Goze and S. A. Ayupov, Kluwer Acad. Publ., Dordrecht, 1998, 127–144 | MR | Zbl

[2] Bromberg S., Medina A., “Completeness of homogeneous quadratic vector fields”, Qual. Theory Dyn. Syst., 6 (2005), 181–185 | DOI | MR | Zbl

[3] Dumitrescu S., Zeghib A., Géométries Lorentziennes de dimension 3: classification et complétude, math.DG/0703846

[4] Guediri M., Lafontaine J., “Sur la complétude des varietés pseudo-Rimanniennes”, J. Geom. Phys., 15 (1995), 150–158 | DOI | MR | Zbl

[5] Guediri M., “Sur la complétude des pseudo-métriques invariantes a gauche sur les groupes de Lie nilpotents”, Rend. Sem. Math. Univ. Politec. Torino, 52 (1994), 371–376 | MR | Zbl

[6] Guediri M., “On completeness of left-invariant Lorentz metrics on solvable Lie groups”, Rev. Mat. Univ. Complut. Madrid, 9 (1996), 337–350 | MR | Zbl

[7] Kaplan J. L., Yorke J. A., “Non associative real algebras and quadratic differential equations”, Nonlinear Anal., 3 (1979), 49–51 | DOI | MR | Zbl

[8] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl