@article{SIGMA_2008_4_a86,
author = {Drazen Adamovic and Antun Milas},
title = {The $N=1$ {Triplet} {Vertex} {Operator} {Superalgebras:} {Twisted} {Sector}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a86/}
}
Drazen Adamovic; Antun Milas. The $N=1$ Triplet Vertex Operator Superalgebras: Twisted Sector. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a86/
[1] Abe T., Buhl G., Dong C., “Rationality, regularity, and $C_2$-cofiniteness”, Trans. Amer. Math. Soc., 356 (2004), 3391–3402 ; math.QA/0204021 | DOI | MR | Zbl
[2] Adamović D., “Classification of irreducible modules of certain subalgebras of free boson vertex algebra”, J. Algebra, 270 (2003), 115–132 ; math.QA/0207155 | DOI | MR | Zbl
[3] Adamović D., Milas A., “Logarithmic intertwining operators and $\mathcal W(2,2p-1)$-algebras”, J. Math. Phys., 48 (2007), 073503, 20 pp., ages ; math.QA/0702081 | DOI | MR | Zbl
[4] Adamović D., Milas A., “On the triplet vertex algebra $\mathcal W(p)$”, Adv. Math., 217 (2008), 2664–2699 ; arXiv:0707.1857 | MR | Zbl
[5] Adamović D., Milas A., “The $N=1$ triplet vertex operator superalgebras”, Comm. Math. Phys., 288:1 (2009), 225–270 ; arXiv:0712.0379 | DOI | MR | Zbl
[6] Adamović D., Milas A., An analogue of modular BPZ-equations in logarithmic (super)conformal field theory, submitted
[7] Adamović D., Milas A., Lattice construction of logarithmic modules, preparation
[8] Arakawa T., Representation theory of W-algebras, II: Ramond twisted representations, arXiv:0802.1564 | MR
[9] Bakalov B., Kac V., “Twisted modules over lattice vertex algebras”, Lie Theory and Its Applications in Physics, V, World Sci. Publ., River Edge, NJ, 2004, 3–26 ; math.QA/0402315 | MR
[10] Dong C., “Twisted modules for vertex algebras associated with even lattices”, J. Algebra, 165 (1994), 91–112 | DOI | MR | Zbl
[11] Dong C., Zhao Z., “Modularity in orbifold theory for vertex operator superalgebras”, Comm. Math. Phys., 260 (2005), 227–256 ; math.QA/0411524 | DOI | MR | Zbl
[12] Dörrzapf M., “Highest weight representations of the $N=1$ Ramond algebra”, Nuclear Phys. B, 595 (2001), 605–653 | DOI | MR | Zbl
[13] Feingold A. J., Frenkel I. B., Ries J. F. X., Spinor construction of vertex operator algebras, triality, and $E_8^{(1)}$, Contemporary Mathematics, 121, American Mathematical Society, Providence, RI, 1991 | MR | Zbl
[14] Feingold A. J., Ries J. F. X., Weiner M., “Spinor construction of the $c=\frac12$ minimal model”, Moonshine, the Monster and Related Topics (South Hadley, MA, 1994), Contemporary Mathematics, 193, eds. C. Dong and G. Mason, American Mathematical Society, Providence, RI, 1996, 45–92 ; hep-th/9501114 | MR | Zbl
[15] Feigin B. L., Gaĭnutdinov A. M., Semikhatov A. M., Tipunin I. Yu., “Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center”, Comm. Math. Phys., 265 (2006), 47–93 ; hep-th/0504093 | DOI | MR | Zbl
[16] Frenkel I. B., Lepowsky J., Meurman A., Vertex operator algebras and the monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[17] Huang Y.-Z., Milas A., “Intertwining operator superalgebras and vertex tensor categories for superconformal algebras. I”, Commun. Contemp. Math., 4 (2002), 327–355 ; math.QA/9909039 | DOI | MR | Zbl
[18] Iohara K., Koga Y., “Fusion algebras for $N=1$ superconformal field theories through coinvariants. II. $N=1$ super-Virasoro-symmetry”, J. Lie Theory, 11 (2001), 305–337 | MR | Zbl
[19] Iohara K., Koga Y., “Representation theory of the Neveu–Schwarz and Ramond algebras. I. Verma modules”, Adv. Math., 178 (2003), 1–65 | DOI | MR | Zbl
[20] Iohara K., Koga Y., “Representation theory of the Neveu–Schwarz and Ramond algebras. II. Fock modules”, Ann. Inst. Fourier (Grenoble), 53 (2003), 1755–1818 | MR | Zbl
[21] Kac V. G., Vertex algebras for beginners, 2nd ed., University Lecture Series, 10, American Mathematical Society, Providence, RI, 1998 | MR
[22] Kac V., Wakimoto M., “Unitarizable highest weight representations of the Virasoro, Neveu–Schwarz and Ramond algebras”, Conformal Groups and Related Symmetries: Physical Results and Mathematical Background (Clausthal-Zellerfeld, 1985), Lecture Notes in Phys., 261, Springer, Berlin, 1986, 345–371 | MR
[23] Kac V., Wakimoto M., “Quantum reduction in the twisted case”, Infinite Dimensional Algebras and Quantum Integrable Systems, Progr. Math., 237, Birkhäuser, Basel, 2005, 89–131 ; math-ph/0404049 | MR | Zbl
[24] Li H., “Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules”, Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994), Contemporary Mathematics, 193, eds. C. Dong and G. Mason, American Mathematical Society, Providence, RI, 1996, 203–236 ; q-alg/9504022 | MR | Zbl
[25] Meurman A., Rocha-Caridi A., “Highest weight representations of the Neveu–Schwarz and Ramond algebras”, Comm. Math. Phys., 107 (1986), 263–294 | DOI | MR | Zbl
[26] Milas A., “Fusion rings for degenerate minimal models”, J. Algebra, 254 (2002), 300–335 ; math.QA/0003225 | DOI | MR | Zbl
[27] Milas A., “Characters, supercharacters and Weber modular functions”, J. Reine Angew. Math., 608 (2007), 35–64 | MR | Zbl
[28] Miyamoto M., “Modular invariance of vertex operator algebras satisfying $C_2$-cofiniteness”, Duke Math. J., 122 (2004), 51–91 ; math.QA/020910 | DOI | MR | Zbl
[29] Xu X., Introduction to vertex operator superalgebras and their modules, Mathematics and Its Applications, 456, Kluwer Academic Publishers, Dordrecht, 1998 | MR
[30] Zhu Y.-C., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302 | DOI | MR | Zbl