Vertex Algebroids over Veronese Rings
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a canonical quantization of Courant algebroids over Veronese rings. Part of our approach allows a semi-infinite cohomology interpretation, and the latter can be used to define sheaves of chiral differential operators on some homogeneous spaces including the space of pure spinors punctured at a point.
Keywords: differential graded algebra; vertex algebra; algebroid.
@article{SIGMA_2008_4_a85,
     author = {Fyodor Malikov},
     title = {Vertex {Algebroids} over {Veronese} {Rings}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a85/}
}
TY  - JOUR
AU  - Fyodor Malikov
TI  - Vertex Algebroids over Veronese Rings
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a85/
LA  - en
ID  - SIGMA_2008_4_a85
ER  - 
%0 Journal Article
%A Fyodor Malikov
%T Vertex Algebroids over Veronese Rings
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a85/
%G en
%F SIGMA_2008_4_a85
Fyodor Malikov. Vertex Algebroids over Veronese Rings. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a85/

[1] Arkhipov S., Gaitsgory D., “Differential operators on the loop group via chiral algebras”, Int. Math. Res. Not., 2002:4 (2002), 165–210 ; math.AG/0009007 | DOI | MR | Zbl

[2] Behrend K., Differential graded schemes I: Perfect resolving algebras, math.AG/0212225

[3] Backelin J., Fröberg R., “Koszul algebras, Veronese subrings and rings with linear resolutions”, Rev. Roumaine Math. Pures Appl., 30:2 (1985), 85–97 | MR | Zbl

[4] Berkovits N., Nekrasov N., “The character of pure spinors”, Lett. Math. Phys., 74 (2005), 75–109 ; hep-th/0503075 | DOI | MR | Zbl

[5] Berkovits N., “Super-Poincaré covariant quantization of the superstring”, J. High Energy Phys., 2000:4 (2000), 18, 17 pp., ages ; hep-th/0001035 | DOI | MR | Zbl

[6] Bezrukavnikov R., Koszul property and Frobenius splitting of Schubert varieties, alg-geom/9502021

[7] Bressler P., “The first Pontryagin class”, Compos. Math., 143 (2007), 1127–1163 ; math.AT/0509563 | DOI | MR | Zbl

[8] Courant T. J., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl

[9] Dorfman I., “Dirac structures of integrable evolution equations”, Phys. Lett. A, 125:5 (1987), 240–246 | DOI | MR

[10] Frenkel E., Private communication

[11] Frenkel E., “Wakimoto modules, opers and the center at the critical level”, Adv. Math., 195 (2005), 297–404 ; math.QA/0210029 | DOI | MR | Zbl

[12] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, 88, American Mathematical Society, Providence, RI, 2004 | MR | Zbl

[13] Feigin B., “Semi-infinite homology of Lie, Kac–Moody and Virasoro algebras”, Uspekhi Mat. Nauk, 39:2 (1984), 195–196 (in Russian) | MR

[14] Feigin B., Parkhomenko S., “Regular representation of affine Kac–Moody algebras”, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., 19, Kluwer Acad. Publ., Dordrecht, 1996, 415–424 ; hep-th/9308065 | MR | Zbl

[15] Gorbounov V., Malikov F., Schechtman V., “Gerbes of chiral differential operators. II. Vertex algebroids”, Inv. Math., 155 (2004), 605–680 ; math.AG/0003170 | DOI | MR | Zbl

[16] Gorbounov V., Malikov F., Schechtman V., “On chiral differential operators over homogeneous spaces”, Int. J. Math. Math. Sci., 26:2 (2001), 83–106 ; math.AG/0008154 | DOI | MR | Zbl

[17] Gorbounov V., Schechtman V., Homological algebra and divergent series, arXiv:0712.3670

[18] Hinich V., “Homological algebra of homotopy algebras”, Comm. Algebra, 25 (1997), 3291–3323 ; q-alg/9702015 | DOI | MR | Zbl

[19] Inamdar S. P., Mehta V. B., “Frobenius splitting of Schubert varieties and linear syzygies”, Amer. J. Math., 116 (1994), 1569–1586 | DOI | MR | Zbl

[20] Kac V., Vertex algebras for beginners, 2nd ed., University Lecture Series, 10, American Mathematical Society, Providence, RI, 1998 | MR

[21] Li H., “Abelianizing vertex algebras”, Comm. Math. Phys., 259 (2005), 391–411 ; math.QA/0409140 | DOI | MR | Zbl

[22] Liu Z.-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574 ; dg-ga/9508013 | MR | Zbl

[23] Malikov F., “Lagrangian approach to sheaves of vertex algebras”, Comm. Math. Phys., 278 (2008), 487–548 ; math.AG/0604093 | DOI | MR | Zbl

[24] Nekrasov N., Lectures on curved beta-gamma systems, pure spinors, and anomalies, hep-th/0511008

[25] Primc M., “Vertex algebras generated by Lie algebras”, J. Pure Appl. Algebra, 135 (1999), 253–293 ; math.QA/9901095 | DOI | MR | Zbl