@article{SIGMA_2008_4_a84,
author = {Petr Kulish and Vladimir Lyakhovsky},
title = {String {Functions} for {Affine} {Lie} {Algebras} {Integrable} {Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a84/}
}
Petr Kulish; Vladimir Lyakhovsky. String Functions for Affine Lie Algebras Integrable Modules. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a84/
[1] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “One-dimensional configuration sums in vertex models and affine Lie algerba characters”, Lett. Math. Phys., 17 (1989), 69–77 ; Preprint RIMS-631, 1988 | DOI | MR | Zbl | MR
[2] Faddeev L. D., “How the algebraic Bethe ansatz works for integrable models”, Symetries Quantique, Proc. Les Houches Summer School (Les Houches, 1995), eds. A. Connes, K. Gawedski, J. Zinn-Justin, North-Holland, 1998, 149–219 ; hep-th/9605187 | MR | Zbl
[3] Kazakov V. A., Zarembo K., “Classical/quantum integrability in non-compact sector of AdS/CFT”, J. High Energy Phys., 2004:10 (2004), 060, 23 pp., ages ; hep-th/0410105 | DOI | MR
[4] Beisert N., “The dilatation operator of $N=4$ super Yang–Mills theory and integrability”, Phys. Rep., 405 (2005), 1–202 ; hep-th/0407277 | DOI | MR
[5] Bernstein I. N., Gelfand I. M., Gelfand S. I., “Differential operators on the basic affine space and a study of $\gamma$-modules”, Lie Groups and Their Representations, Summer School of Bolyai Janos Math. Soc. (Budapest, 1971), ed. I. M. Gelfand, Halsted Press, New York, 1975, 21–64 | MR
[6] Kac V., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR
[7] Wakimoto M., Infinite-dimensional Lie algebras, Translations of Mathematical Monographs, 195, American Mathematical Society, Providence, RI, 2001 | MR | Zbl
[8] Fauser B., Jarvis P. D., King R. C., Wybourn B. G., New branching rules induced by plethysm, math-ph/0505037 | MR
[9] Hwang S., Rhedin H., “General branching functions of affine Lie algebras”, Modern Phys. Lett. A, 10 (1995), 823–830 ; hep-th/9408087 | DOI | MR | Zbl
[10] Feigin B., Feigin E., Jimbo M., Miwa T., Mukhin E., Principal $\widehat{\frak{sl_3}}$ subspaces and quantum Toda Hamiltonians, arXiv:0707.1635 | MR
[11] Ilyin M., Kulish P., Lyakhovsky V., “On the properties of branching coefficients for affine Lie groups”, Algebra i Analiz, 21:2 (2009), 52–70 ; arXiv:0812.2124 | MR
[12] Wakimoto M., Lectures on infinite-dimensional Lie algebra, World Scientific Publishing Co., Inc., River Edge, NJ, 2001 | MR | Zbl
[13] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl
[14] Lyakhovsky V. D., Recurrent properties of affine Lie algebra representations, Supersymmetry and Quantum Symmetry (August, 2007, Dubna)