@article{SIGMA_2008_4_a83,
author = {Hatem Mejjaoli},
title = {Dunkl {Hyperbolic} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a83/}
}
Hatem Mejjaoli. Dunkl Hyperbolic Equations. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a83/
[1] Ben Sa\"{i}d S., Ørsted B., “The wave equation for Dunkl operators”, Indag. Math. (N.S.), 16 (2005), 351–391 | DOI | MR | Zbl
[2] Brenner P., “On the existence of global smooth solutions of certain semi-linear hyperbolic equations”, Math. Z., 167 (1979), 99–135 | DOI | MR | Zbl
[3] Brenner P., von Wahl W., “Global classical solutions of nonlinear wave equations”, Math. Z., 176 (1981), 87–121 | DOI | MR | Zbl
[4] Browder F. E., “On nonlinear wave equations”, Math. Z., 80 (1962), 249–264 | DOI | MR | Zbl
[5] Chazarain J., Piriou A., Introduction to the theory of linear partial differential equations, Studies in Mathematics and its Applications, 14, North-Holland Publishing Co., Amsterdam – New York, 1982 | MR | Zbl
[6] Courant R., Friedrichs K., Lewy H., “Über die partiellen Differenzengleichungen der mathematischen Physik”, Math. Ann., 100 (1928), 32–74 | DOI | MR | Zbl
[7] Dunkl C. F., “Differential-difference operators associated to reflection group”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[8] Dunkl C. F., “Integral kernels with reflection group invariant”, Canad. J. Math., 43 (1991), 1213–1227 | MR | Zbl
[9] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Contemp. Math., 138, 1992, 123–138 | MR | Zbl
[10] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl
[11] Friedrichs K., “The identity of weak and strong extensions of differential operators”, Trans. Amer. Math. Soc., 55 (1944), 132–151 | DOI | MR | Zbl
[12] Friedrichs K., “On the differentiability of the solutions of linear elliptic differential equations”, Comm. Pure Appl. Math., 6 (1953), 299–325 | DOI | MR
[13] Friedrichs K., “Symmetric hyperbolic linear differential equations”, Comm. Pure Appl. Math., 7 (1954), 345–392 | DOI | MR | Zbl
[14] Friedrichs K., “Symmetric positive linear hyperbolic differential equations”, Comm. Pure Appl. Math., 11 (1958), 333–418 | DOI | MR | Zbl
[15] Friedrichs K., Lax P. D., “Boundary value problems for first order operators”, Comm. Pure Appl. Math., 18 (1965), 365–388 | DOI | MR
[16] Friedrichs K., Lax P. D., “On symmetrizable differential operators”, Singular Integrals (Chicago, Ill., 1966), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1967, 128–137 | MR
[17] Hadamard J., “Sur l'intégrale résiduelle”, Bull. Soc. Math. France, 28 (1900), 69–90 | MR | Zbl
[18] Kreiss H.-O., “Initial boundary value problems for hyperbolic systems”, Comm. Pure Appl. Math., 23 (1970), 277–298 | DOI | MR
[19] Lax P. D., “On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations”, Comm. Pure Appl. Math., 8 (1955), 615–633 | DOI | MR | Zbl
[20] Lax P. D., Phillips R. S., “Local boundary conditions for dissipative symmetric linear differential operators”, Comm. Pure Appl. Math., 13 (1960), 427–455 | DOI | MR | Zbl
[21] Majda A., Compressible fluid flow and systems of conservation laws in several space varaibles, Applied Mathematical Sciences, 53, Springer-Verlag, New York, 1984 | MR | Zbl
[22] Mejjaoli H., Trimèche K., “Hypoellipticity and hypoanaliticity of the Dunkl Laplacian operator”, Integral Transforms Spec. Funct., 15 (2004), 523–548 | DOI | MR | Zbl
[23] Mejjaoli H., “Littlewood–Paley decomposition associated with the Dunkl operators, and paraproduct operators”, J. Inequal. Pure Appl. Math., 9:4 (2008), Paper No. 95, 25 pp. | MR | Zbl
[24] Rauch J., “$L^2$ is a continuable initial condition for Kreiss' mixed problems”, Comm. Pure Appl. Math., 25 (1972), 265–285 | DOI | MR | Zbl
[25] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke. Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl
[26] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355 (2003), 2413–2438 ; math.CA/0210137 | DOI | MR | Zbl
[27] Schauder J., “Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichungen zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen”, Fund. Math., 24 (1935), 213–246
[28] Shirota T., “On the propagation speed of hyperbolic operator with mixed boundary conditions”, J. Fac. Sci. Hokkaido Univ. Ser. I, 22 (1972), 25–31 | MR | Zbl
[29] Strauss W., “On weak solutions of semi-linear hyperbolic equations”, An. Acad. Brasil. Ci., 42 (1970), 645–651 | MR | Zbl
[30] Thangavelu S., Xu Y., “Convolution operator and maximal functions for Dunkl transform”, J. Anal. Math., 97 (2005), 25–56 ; math.CA/0403049 | DOI | MR
[31] Trimèche K., “The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual”, Integral Transform. Spec. Funct., 12 (2001), 349–374 | DOI | MR | Zbl
[32] Trimèche K., “Paley–Wiener theorems for Dunkl transform and Dunkl translation operators”, Integral Transforms Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl
[33] Weber H., Die partiellen Differentialgleichungen der mathematischen Physik. Nach Riemann's Vorlesungen in Vierter auflage neu Bearbeitet, Friederich Vieweg, Braunschweig, 1900
[34] Zaremba S., “Sopra un theorema d'unicità relativo alla equazione delle onde sferiche”, Rend. Accad. Naz. Lincei Ser. 5, 24 (1915), 904–908 | Zbl