Some Orthogonal Polynomials in Four Variables
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The symmetric group on 4 letters has the reflection group $D_3$ as an isomorphic image. This fact follows from the coincidence of the root systems $A_3$ and $D_3$. The isomorphism is used to construct an orthogonal basis of polynomials of 4 variables with 2 parameters. There is an associated quantum Calogero–Sutherland model of 4 identical particles on the line.
Keywords: nonsymmetric Jack polynomials.
@article{SIGMA_2008_4_a81,
     author = {Charles F. Dunkl},
     title = {Some {Orthogonal} {Polynomials} in {Four} {Variables}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a81/}
}
TY  - JOUR
AU  - Charles F. Dunkl
TI  - Some Orthogonal Polynomials in Four Variables
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a81/
LA  - en
ID  - SIGMA_2008_4_a81
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%T Some Orthogonal Polynomials in Four Variables
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a81/
%G en
%F SIGMA_2008_4_a81
Charles F. Dunkl. Some Orthogonal Polynomials in Four Variables. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a81/

[1] Dunkl C. F., “Singular polynomials and modules for the symmetric groups”, Int. Math. Res. Not., 39 (2005), 2409–2436 ; math.RT/0501494 | DOI | MR | Zbl

[2] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[3] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22 ; q-alg/9610016 | DOI | MR | Zbl

[4] Lassalle M., “Une formule de binôme généralisée pour les polynômes de Jack”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 253–256 | MR | Zbl

[5] Okounkov A., Olshanski G., “Shifted Jack polynomials, binomial formula, and applications”, Math. Res. Lett., 4 (1997), 69–78 ; q-alg/9608020 | MR | Zbl