@article{SIGMA_2008_4_a79,
author = {Stavros Garoufalidis and Thang T. Q. L\^e and Marcos Mari\~no},
title = {Analyticity of the {Free} {Energy} of {a~Closed} {3-Manifold}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a79/}
}
TY - JOUR AU - Stavros Garoufalidis AU - Thang T. Q. Lê AU - Marcos Mariño TI - Analyticity of the Free Energy of a Closed 3-Manifold JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a79/ LA - en ID - SIGMA_2008_4_a79 ER -
Stavros Garoufalidis; Thang T. Q. Lê; Marcos Mariño. Analyticity of the Free Energy of a Closed 3-Manifold. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a79/
[1] Aoki T., Kawai T., Koike T., Takei Y., “On the exact WKB analysis of operators admitting infinitely many phases”, Adv. Math., 181 (2004), 165–189 | DOI | MR | Zbl
[2] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[3] Bar-Natan D., Garoufalidis S., “On the Melvin–Morton–Rozansky conjecture”, Invent. Math., 125 (1996), 103–133 | DOI | MR | Zbl
[4] Bar-Natan D., Lawrence R., “A rational surgery formula for the LMO invariant”, Israel J. Math., 140 (2004), 29–60 ; math.GT/0007045 | DOI | MR | Zbl
[5] Bar-Natan D., Garoufalidis S., Rozansky L., Thurston D., “The Aarhus integral of rational homology 3-spheres. I. A highly non trivial flat connection on $S^3$”, Selecta Math. (N.S.), 8 (2002), 315–339 ; ; Bar-Natan D., Garoufalidis S., Rozansky L., Thurston D., “The Aarhus integral of rational homology 3-spheres. II. Invariance and universality”, Selecta Math. (N.S.), 8 (2002), 341–371 ; ; Bar-Natan D., Garoufalidis S., Rozansky L., Thurston D., “The Aarhus integral of rational homology 3-spheres. III. Relation with the Le–Murakami–Ohtsuki invariant”, Selecta Math. (N.S.), 10 (2004), 305–324 ; q-alg/9706004math.QA/9801049math.QA/9808013 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[6] Bender E. A., Canfield E. R., “The asymptotic number of rooted maps on a surface”, J. Combin. Theory Ser. A, 43 (1986), 244–257 | DOI | MR | Zbl
[7] Bender E. A., Gao Z., Richmond L. B., “The map asymptotics constant $t_g$”, Electron. J. Combin., 15:1 (2008), paper 51, 8 pages | MR
[8] Benna M. K., Benvenuti S., Klebanov I. R., Scardicchio A., A test of the AdS/CFT correspondence using high-spin operators, hep-th/0611135
[9] Beisert N., Eden B., Staudacher M., “Transcendentality and crossing”, J. Stat. Mech., 2007 (2007), P01021, 30 pp., ages ; hep-th/0610251 | DOI
[10] Bessis D., Itzykson C., Zuber J. B., “Quantum field theory techniques in graphical enumeration”, Adv. in Appl. Math., 1 (1980), 109–157 | DOI | MR | Zbl
[11] Boutroux P., “Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre”, Ann. Sci. École Norm. Sup. (3), 30 (1913), 255–375 | MR | Zbl
[12] Brézin E., Itzykson C., Parisi G., Zuber J. B., “Planar diagrams”, Comm. Math. Phys., 59 (1978), 35–51 | DOI | MR | Zbl
[13] Cohen H., Lewin L., Zagier D., “A sixteenth-order polylogarithm ladder”, Experiment. Math., 1 (1992), 25–34 | MR | Zbl
[14] Costin O., Garoufalidis S., “Resurgence of the fractional polylogarithms”, Math. Res. Lett., 16 (2009), 10001 ; math.CA/0701743 | MR
[15] Costin O., Kruskal M., “Optimal uniform estimates and rigorous asymptotics beyond all orders for a class of ordinary differential equations”, Proc. Roy. Soc. London Ser. A, 452:1948 (1996), 1057–1085 ; math.CA/0608412 | DOI | MR | Zbl
[16] Di Francesco P., Ginsparg P., Zinn-Justin J., “$2$D gravity and random matrices”, Phys. Rep., 254:1–2 (1995), 133 pp., ages ; hep-th/9306153 | MR
[17] Eynard B., Zinn-Justin J., “Large order behaviour of $2$D gravity coupled to $D1$ matter”, Phys. Lett. B, 302 (1993), 396–402 ; hep-th/9301004 | DOI | MR
[18] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR | Zbl
[19] Fokas A. S., Its A. R., Kapaev A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, American Mathematical Society, Providence, RI, 2006 | MR | Zbl
[20] Garoufalidis S., Lê T. T. Q., “Gevrey series in quantum topology”, J. Reine Angew. Math., 618 (2008), 169–195 ; math.GT/0609618 | MR | Zbl
[21] Garoufalidis S., Lê T. T. Q., Asymptotics of the colored Jones function of a knot, math.GT/0508100
[22] Garoufalidis S., “Difference and differential equations for the colored Jones function”, J. Knot Theory Ramifications, 17 (2008), 495–510 ; math.GT/0306229 | DOI | MR | Zbl
[23] Garoufalidis S., “Chern–Simons theory, analytic continuation and arithmetic”, Acta Math. Vietnam., 33:3 (2008), 335–362 ; arXiv:0711.1716 | MR | Zbl
[24] Garoufalidis S., Habegger N., “The Alexander polynomial and finite type $3$-manifold invariants”, Math. Ann., 316 (2000), 485–497 ; q-alg/9708002 | DOI | MR | Zbl
[25] Garoufalidis S., Mariño M., On Chern–Simons matrix models, math.GT/0601390
[26] Garoufalidis S., Mariño M., in preparation
[27] Garoufalidis S., Mariño M., in preparation
[28] Garoufalidis S., Rozansky L., “The loop of the Kontsevich integral, the null-move and $S$-equivalence”, Topology, 43 (2004), 1183–1210 ; math.GT/0003187 | DOI | MR | Zbl
[29] Gao Z. C., “A pattern for the asymptotic number of rooted maps on surfaces”, J. Combin. Theory Ser. A, 64 (1993), 246–264 | DOI | MR | Zbl
[30] Gao Z. C., “The number of rooted triangular maps on a surface”, J. Combin. Theory Ser. B, 52 (1991), 236–249 | DOI | MR | Zbl
[31] Gopakumar R., Vafa C., M-theory and topological strings I, hep-th/9809187
[32] Goulden I. P., Jackson D. M., “The KP hierarchy, branched covers, and triangulations”, Adv. Math., 219:3 (2008), 932–951 ; arXiv:0803.3980 | DOI | MR | Zbl
[33] Habegger N., Masbaum G., “The Kontsevich integral and Milnor's invariants”, Topology, 39 (2000), 1253–1289 | DOI | MR | Zbl
[34] Habegger N., Thompson G., “The universal perturbative quantum 3-manifold invariant, Rozansky–Witten invariants and the generalized Casson invariants”, Acta Math. Vietnam., 33:3 (2008), 363–419 ; math.GT/9911049 | MR | Zbl
[35] 't Hooft G., “On the convergence of planar diagram expansions”, Comm. Math. Phys., 86 (1982), 449–464 | DOI | MR
[36] Joshi N., Kruskal M. D., “A direct proof that solutions of the six Painlevé equations have no movable singularities except poles”, Stud. Appl. Math., 93 (1994), 187–207 | MR | Zbl
[37] Differential Equations, 24 (1988), 1107–1115 | MR | Zbl
[38] Kapaev A. A., “Quasi-linear stokes phenomenon for the Painlevé first equation”, J. Phys. A: Math. Gen., 37 (2004), 11149–11167 ; nlin.SI/0404026 | DOI | MR | Zbl
[39] Kupergberg G., Thurston D. P., Perturbative 3-manifold invariants by cut-and-paste topology, math.GT/9912167
[40] Kuriya T., On the LMO conjecture, arXiv:0803.1732
[41] Lê T. T. Q., Murakami J., Ohtsuki T., “On a universal perturbative invariant of 3-manifolds”, Topology, 37 (1998), 539–574 | DOI | MR | Zbl
[42] Lê T. T. Q., “On perturbative $\mathrm PSU(n)$ invariants of rational homology 3-spheres”, Topology, 39 (2000), 813–849 ; math.GT/9802032 | DOI | MR | Zbl
[43] Lê T. T. Q., “Quantum invariants of 3-manifolds: integrality, splitting, and perturbative expansion”, Topology Appl., 127 (2003), 125–152 ; math.QA/0004099 | DOI | MR | Zbl
[44] Le Guillou J. C., Zinn-Justin J. (ed.), Large order behavior of perturbation theory, North-Holland, Amsterdam, 1990
[45] Mariño M., “Chern–Simons theory, matrix integrals and perturbative three-manifold invariants”, Comm. Math. Phys., 253 (2005), 25–49 ; hep-th/0207096 | DOI | MR | Zbl
[46] Mariño M., “Chern–Simons theory and topological strings”, Rev. Modern Phys., 77 (2005), 675–720 ; hep-th/0406005 | DOI | MR
[47] Mariño M., Schiappa R., Weiss M., “Nonperturbative effects and the large-order behavior of matrix models and topological strings”, Commun. Number Th. Phys., 2 (2008), 349–419 ; arXiv:0711.1954 | MR | Zbl
[48] Oesterlé J., “Polylogarithmes”, Séminaire Bourbaki Vol. 1992/93, Exp. no. 762, Astérisque, 216, 1993, 49–67 | MR | Zbl
[49] Ohtsuki T., “A polynomial invariant of rational homology $3$-spheres”, Invent. Math., 123 (1996), 241–257 | MR | Zbl
[50] Ohtsuki T., Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002 | MR | Zbl
[51] Rozansky L., “The universal $R$-matrix, Burau representation and the Melvin–Morton expansion of the colored Jones polynomial”, Adv. Math., 134 (1998), 1–31 | DOI | MR | Zbl
[52] Takata T., “On quantum $\mathrm{PSU}(n)$-invariants for lens spaces”, J. Knot Theory Ramifications, 5 (1996), 885–901 | DOI | MR | Zbl
[53] Takei Y., “On the connection formula for the first Painlevé equation – from the viewpoint of the exact WKB analysis”, Surikaisekikenkyusho Kokyuroku, 931 (1995), 70–99 | MR
[54] Turaev V., “The Yang–Baxter equation and invariants of links”, Invent. Math., 92 (1988), 527–553 | DOI | MR | Zbl
[55] Witten E., “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR