Non-Gatherable Triples for Non-Affine Root Systems
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, $F_4$ and $E_6$. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory.
Keywords: root systems; Weyl groups; reduced decompositions.
@article{SIGMA_2008_4_a78,
     author = {Ivan Cherednik and Keith Schneider},
     title = {Non-Gatherable {Triples} for {Non-Affine} {Root} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a78/}
}
TY  - JOUR
AU  - Ivan Cherednik
AU  - Keith Schneider
TI  - Non-Gatherable Triples for Non-Affine Root Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a78/
LA  - en
ID  - SIGMA_2008_4_a78
ER  - 
%0 Journal Article
%A Ivan Cherednik
%A Keith Schneider
%T Non-Gatherable Triples for Non-Affine Root Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a78/
%G en
%F SIGMA_2008_4_a78
Ivan Cherednik; Keith Schneider. Non-Gatherable Triples for Non-Affine Root Systems. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a78/

[1] Bourbaki N., Groupes et algèbres de Lie, Ch. 4–6, Hermann, Paris, 1969

[2] Cherednik I., “Non-semisimple Macdonald polynomials. I”, Selecta Math., 14:3–4 (2009), 427–569 ; arXiv:0709.1742 | MR | Zbl

[3] Cherednik I., “Factorizable particles on a half-line, and root systems”, Teoret. Mat. Fiz., 61 (1984), 35–44 (in Russian) | MR | Zbl

[4] Cherednik I., “Quantum Knizhnik–Zamolodchikov equations and affine root systems”, Comm. Math. Phys., 150 (1992), 109–136 | DOI | MR | Zbl

[5] Cherednik I., “Special bases of irreducible representations of a degenerate affine Hecke algebra”, Funktsional. Anal. i Prilozhen., 20:1 (1986), 87–88 (in Russian) | DOI | MR | Zbl

[6] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[7] Kazhdan D., Lusztig G., “Proof of the Deligne–Langlands conjecture for Hecke algebras”, Invent. Math., 87 (1987), 153–215 | DOI | MR | Zbl