Liouville Theorem for Dunkl Polyharmonic Functions
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Assume that $f$ is Dunkl polyharmonic in $\mathbb R^n$ (i.e. $(\Delta_h)^p f=0$ for some integer $p$, where $\Delta_h$ is the Dunkl Laplacian associated to a root system $R$ and to a multiplicity function $\kappa$, defined on $R$ and invariant with respect to the finite Coxeter group). Necessary and successful condition that $f$ is a polynomial of degree $\le s$ for $s\ge 2p-2$ is proved. As a direct corollary, a Dunkl harmonic function bounded above or below is constant.
Keywords: Liouville theorem; Dunkl Laplacian; polyharmonic functions.
@article{SIGMA_2008_4_a75,
     author = {Guangbin Ren and Liang Liu},
     title = {Liouville {Theorem} for {Dunkl} {Polyharmonic} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a75/}
}
TY  - JOUR
AU  - Guangbin Ren
AU  - Liang Liu
TI  - Liouville Theorem for Dunkl Polyharmonic Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a75/
LA  - en
ID  - SIGMA_2008_4_a75
ER  - 
%0 Journal Article
%A Guangbin Ren
%A Liang Liu
%T Liouville Theorem for Dunkl Polyharmonic Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a75/
%G en
%F SIGMA_2008_4_a75
Guangbin Ren; Liang Liu. Liouville Theorem for Dunkl Polyharmonic Functions. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a75/

[1] Axler S., Bourdon P., Ramey W., Harmonic function theory, 2nd ed., Graduate Texts in Mathematics, 137, Springer-Verlag, New York, 2001 | MR | Zbl

[2] Armitage D. H., “A Liouville theorem for polyharmonic functions”, Hiroshima Math. J., 31 (2001), 367–370 | MR | Zbl

[3] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl

[4] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polymomials for finite groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl

[5] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[6] Futamura T., Kishi K., Mizuta Y., “A generalization of the Liouville theorem to polyharmonic functions”, J. Math. Soc. Japan, 53 (2001), 113–118 | DOI | MR | Zbl

[7] Gallardo L., Godefroy L., “Propriété de Liouville et équation de Poisson pour le Laplacien généralisé de Dunkl”, C. R. Math. Acad. Sci. Paris, 337 (2003), 639–644 | MR | Zbl

[8] González Vieli F. J., “A new proof of a Liouville-type theorem for polyharmonic functions”, Real Anal. Exchange, 30 (2004/05), 319–322 | MR

[9] Kuran Ü., “Generalizations of a theorem on harmonic functions”, J. London Math. Soc., 41 (1966), 145–152 | DOI | MR | Zbl

[10] Li A., Li Y. Y., “A fully nonlinear version of the Yamabe problem and a Harnack type inequality”, C. R. Math. Acad. Sci. Paris, 336 (2003), 319–324 ; math.AP/0212031 | MR | Zbl

[11] Li A., Li Y. Y., “On some conformally invariant fully nonlinear equations”, C. R. Math. Acad. Sci. Paris, 337 (2003), 639–644 | MR | Zbl

[12] Maslouhi M., Youssfi E. H., “Harmonic functions associated to Dunkl operators”, Monatsh. Math., 152 (2007), 337–345 | DOI | MR | Zbl

[13] Mejjaoli H., Trimèche K., “On a mean value property associated with the Dunkl Laplacian operator and applications”, Integral Transform. Spec. Funct., 12 (2001), 279–302 | DOI | MR | Zbl

[14] Nicolesco M., “Sur les fonctions de $n$ variables, harmoniques d'order $p$”, Bull. Soc. Math. France, 60 (1932), 129–151 | MR

[15] Ren G. B., “Almansi decomposition for Dunkl operators”, Sci. China Ser. A, 48 (2005), 333–342 | DOI | MR | Zbl

[16] Ren G. B., Howe duality in Dunkl superspace, Preprint

[17] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, eds. E. Koelink et al., Springer, Berlin, 2003, 93–135 ; math.CA/0210366 | MR | Zbl