Generalized Bessel function of Type $D$
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We write down the generalized Bessel function associated with the root system of type $D$ by means of multivariate hypergeometric series. Our hint comes from the particular case of the Brownian motion in the Weyl chamber of type $D$.
Keywords: radial Dunkl processes; Brownian motions in Weyl chambers; generalized Bessel function; multivariate hypergeometric series.
@article{SIGMA_2008_4_a74,
     author = {Nizar Demni},
     title = {Generalized {Bessel} function of {Type~}$D$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a74/}
}
TY  - JOUR
AU  - Nizar Demni
TI  - Generalized Bessel function of Type $D$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a74/
LA  - en
ID  - SIGMA_2008_4_a74
ER  - 
%0 Journal Article
%A Nizar Demni
%T Generalized Bessel function of Type $D$
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a74/
%G en
%F SIGMA_2008_4_a74
Nizar Demni. Generalized Bessel function of Type $D$. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a74/

[1] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl

[2] Beerends R. J., Opdam E. M., “Certain hypergeometric series related to the root system $BC$”, Trans. Amer. Math. Soc., 339 (1993), 581–607 | DOI | MR

[3] Chybiryakov O., “Skew-product representations of multidimensional Dunkl–Markov processes”, Ann. Inst. H. Poincaré Probab. Statist., 44 (2008), 593–611 ; arXiv:0808.3033 | DOI | MR | Zbl

[4] Dunkl C. F., “Intertwining operators associated to the group $S_3$”, Trans. Amer. Math. Soc., 347 (1995), 3347–3374 | DOI | MR | Zbl

[5] Gallardo L., Yor M., “Some new examples of Markov processes which enjoy the time-inversion property”, Probab. Theory Related Fields, 132 (2005), 150–162 | DOI | MR | Zbl

[6] Gallardo L., Yor M., “A chaotic representation property of the multidimensional Dunkl processes”, Ann. Probab., 34 (2006), 1530–1549 ; math.PR/0609679 | DOI | MR | Zbl

[7] Gallardo L., Yor M., “Some remarkable properties of the Dunkl martingales”, Memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, Lecture Notes in Math., 1874, Springer, Berlin, 2006, 337–356 | MR | Zbl

[8] Gallardo L., Godefroy L., “An invariance principle related to a process which generalizes $N$-dimensional Brownian motion”, C. R. Math. Acad. Sci. Paris, 338 (2004), 487–492 | MR | Zbl

[9] Grabiner D. J., “Brownian motion in a Weyl chamber, non-colliding particles and random matrices”, Ann. Inst. H. Poincaré Probab. Statist., 35 (1999), 177–204 ; math.RT/9708207 | DOI | MR | Zbl

[10] Gross K. I., Richards D. St. P., “Total positivity, spherical series and hypergeometric functions of matrix argument”, J. Approx. Theor., 59 (1989), 224–246 | DOI | MR | Zbl

[11] Humphreys J. E., Reflections groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[12] Kaneko J., “Selberg integrals and hypergeometric functions with Jack polynomials”, SIAM J. Math. Anal., 24 (1993), 1086–1110 | DOI | MR | Zbl

[13] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl

[14] Mcdonald L. G., Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[15] Muirhead R. J., Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley Sons, Inc., New York, 1982 | MR | Zbl

[16] Revuz D., Yor M., Continuous martingales and Brownian motion, 3rd ed., Springer-Verlag, Berlin, 1999 | MR | Zbl

[17] Rösler M., Voit M., “Markov processes related with Dunkl operators”, Adv. in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl

[18] Rösler M., “Dunkl operator: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 ; math.CA/0210366 | MR | Zbl

[19] Schapira B., “The Heckman–Opdam Markov processes”, Probab. Theory Related Fields, 138 (2007), 495–519 | DOI | MR | Zbl