First Hitting Time of the Boundary of the Weyl Chamber by Radial Dunkl Processes
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide two equivalent approaches for computing the tail distribution of the first hitting time of the boundary of the Weyl chamber by a radial Dunkl process. The first approach is based on a spectral problem with initial value. The second one expresses the tail distribution by means of the $W$-invariant Dunkl–Hermite polynomials. Illustrative examples are given by the irreducible root systems of types $A$, $B$, $D$. The paper ends with an interest in the case of Brownian motions for which our formulae take determinantal forms.
Keywords: radial Dunkl processes; Weyl chambers; hitting time; multivariate special functions; generalized Hermite polynomials.
@article{SIGMA_2008_4_a73,
     author = {Nizar Demni},
     title = {First {Hitting} {Time} of the {Boundary} of the {Weyl} {Chamber} by {Radial} {Dunkl} {Processes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a73/}
}
TY  - JOUR
AU  - Nizar Demni
TI  - First Hitting Time of the Boundary of the Weyl Chamber by Radial Dunkl Processes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a73/
LA  - en
ID  - SIGMA_2008_4_a73
ER  - 
%0 Journal Article
%A Nizar Demni
%T First Hitting Time of the Boundary of the Weyl Chamber by Radial Dunkl Processes
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a73/
%G en
%F SIGMA_2008_4_a73
Nizar Demni. First Hitting Time of the Boundary of the Weyl Chamber by Radial Dunkl Processes. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a73/

[1] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl

[2] Bañuelos R., Smits R. G., “Brownian motions in cones”, Probab. Theory Related Fields, 108 (1997), 299–319 | DOI | MR | Zbl

[3] Beerends R. J., Opdam E. M., “Certain hypergeometric series related to the root system $BC$”, Trans. Amer. Math. Soc., 339 (1993), 581–607 | DOI | MR

[4] Chybiryakov O., Processus de Dunkl et Relation de Lamperti, Ph.D. Thesis, Paris VI University, 2005

[5] Comtet A., Desbois J., “Brownian motion in wedges, last passage time and the second arc-sine law”, J. Phys. A: Math. Gen., 36:17 (2003), L255–L261 ; cond-mat/0302269 | DOI | MR | Zbl

[6] Demni N., “Generalized Bessel function of type $D$”, SIGMA, 4 (2008), 075, 7 pp., ages | MR | Zbl

[7] Demni N., “Radial Dunkl processes associated with dihedral systems”, Séminaires de Probabilités, Lecture Notes in Mathematics, 1979, 2009, 153–169 ; arXiv:0707.0367 | Zbl

[8] Doumerc Y., O'Connell N., “Exit problems associated with finite reflection groups”, Probab. Theory Related Fields, 132 (2005), 501–538 ; arXiv:0707.2009 | DOI | MR | Zbl

[9] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[10] Dunkl C. F., “Intertwining operators associated to the group $S_3$”, Trans. Amer. Math. Soc., 347 (1995), 3347–3374 | DOI | MR | Zbl

[11] Gallardo L., Yor M., “Some new examples of Markov processes which enjoy the time-inversion property”, Probab. Theory Related Fields, 132 (2005), 150–162 | DOI | MR | Zbl

[12] Gallardo L., Yor M., “A chaotic representation property of the multidimensional Dunkl processes”, Ann. Probab., 34 (2006), 1530–1549 ; math.PR/0609679 | DOI | MR | Zbl

[13] Gallardo L., Yor M., “Some remarkable properties of the Dunkl martingales”, Memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, Lecture Notes in Math., 1874, Springer, Berlin, 2006, 337–356 | MR | Zbl

[14] Gallardo L., Godefroy L., “An invariance principle related to a process which generalizes $N$-dimensional Brownian motion”, C. R. Math. Acad. Sci. Paris, 338 (2004), 487–492 | MR | Zbl

[15] Humphreys J. E., Reflections groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[16] Lassalle M., “Polynômes de Laguerre généralisés”, C. R. A. S. Paris Série I, 312 (1991), 725–728 | MR | Zbl

[17] Lassalle M., “Polynômes d'Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 725–728 | MR | Zbl

[18] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl

[19] Rösler M., Voit M., “Markov processes related with Dunkl operators”, Adv.in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl

[20] Rösler M., “Dunkl operator: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 ; math.CA/0210366 | MR | Zbl

[21] Stembridge J. R., “Nonintersecting paths, Pfaffians and plane partitions”, Adv. Math., 83 (1990), 96–131 | DOI | MR