@article{SIGMA_2008_4_a73,
author = {Nizar Demni},
title = {First {Hitting} {Time} of the {Boundary} of the {Weyl} {Chamber} by {Radial} {Dunkl} {Processes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a73/}
}
Nizar Demni. First Hitting Time of the Boundary of the Weyl Chamber by Radial Dunkl Processes. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a73/
[1] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl
[2] Bañuelos R., Smits R. G., “Brownian motions in cones”, Probab. Theory Related Fields, 108 (1997), 299–319 | DOI | MR | Zbl
[3] Beerends R. J., Opdam E. M., “Certain hypergeometric series related to the root system $BC$”, Trans. Amer. Math. Soc., 339 (1993), 581–607 | DOI | MR
[4] Chybiryakov O., Processus de Dunkl et Relation de Lamperti, Ph.D. Thesis, Paris VI University, 2005
[5] Comtet A., Desbois J., “Brownian motion in wedges, last passage time and the second arc-sine law”, J. Phys. A: Math. Gen., 36:17 (2003), L255–L261 ; cond-mat/0302269 | DOI | MR | Zbl
[6] Demni N., “Generalized Bessel function of type $D$”, SIGMA, 4 (2008), 075, 7 pp., ages | MR | Zbl
[7] Demni N., “Radial Dunkl processes associated with dihedral systems”, Séminaires de Probabilités, Lecture Notes in Mathematics, 1979, 2009, 153–169 ; arXiv:0707.0367 | Zbl
[8] Doumerc Y., O'Connell N., “Exit problems associated with finite reflection groups”, Probab. Theory Related Fields, 132 (2005), 501–538 ; arXiv:0707.2009 | DOI | MR | Zbl
[9] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[10] Dunkl C. F., “Intertwining operators associated to the group $S_3$”, Trans. Amer. Math. Soc., 347 (1995), 3347–3374 | DOI | MR | Zbl
[11] Gallardo L., Yor M., “Some new examples of Markov processes which enjoy the time-inversion property”, Probab. Theory Related Fields, 132 (2005), 150–162 | DOI | MR | Zbl
[12] Gallardo L., Yor M., “A chaotic representation property of the multidimensional Dunkl processes”, Ann. Probab., 34 (2006), 1530–1549 ; math.PR/0609679 | DOI | MR | Zbl
[13] Gallardo L., Yor M., “Some remarkable properties of the Dunkl martingales”, Memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, Lecture Notes in Math., 1874, Springer, Berlin, 2006, 337–356 | MR | Zbl
[14] Gallardo L., Godefroy L., “An invariance principle related to a process which generalizes $N$-dimensional Brownian motion”, C. R. Math. Acad. Sci. Paris, 338 (2004), 487–492 | MR | Zbl
[15] Humphreys J. E., Reflections groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[16] Lassalle M., “Polynômes de Laguerre généralisés”, C. R. A. S. Paris Série I, 312 (1991), 725–728 | MR | Zbl
[17] Lassalle M., “Polynômes d'Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I Math., 312 (1991), 725–728 | MR | Zbl
[18] Lebedev N. N., Special functions and their applications, Dover Publications, Inc., New York, 1972 | MR | Zbl
[19] Rösler M., Voit M., “Markov processes related with Dunkl operators”, Adv.in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl
[20] Rösler M., “Dunkl operator: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135 ; math.CA/0210366 | MR | Zbl
[21] Stembridge J. R., “Nonintersecting paths, Pfaffians and plane partitions”, Adv. Math., 83 (1990), 96–131 | DOI | MR