A Jacobson Radical Decomposition of the Fano-Snowflake Configuration
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fano-Snowflake, a specific configuration associated with the smallest ring of ternions $R_{\diamondsuit}$ (arXiv:0803.4436 and arXiv:0806.3153), admits an interesting partitioning with respect to the Jacobson radical of $R_{\diamondsuit}$. The totality of 21 free cyclic submodules generated by non-unimodular vectors of the free left $R_{\diamondsuit}$-module $R_{\diamondsuit}^3$ is shown to split into three disjoint sets of cardinalities 9, 9 and 3 according as the number of Jacobson radical entries in the generating vector is 2, 1 or 0, respectively. The corresponding “ternion-induced” factorization of the lines of the Fano plane sitting in the middle of the Fano-Snowflake is found to differ fundamentally from the natural one, i.e. from that with respect to the Jacobson radical of the Galois field of two elements.
Keywords: non-unimodular geometry over rings; smallest ring of ternions; Fano plane.
@article{SIGMA_2008_4_a71,
     author = {Metod Saniga and Petr Pracna},
     title = {A~Jacobson {Radical} {Decomposition} of the {Fano-Snowflake} {Configuration}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a71/}
}
TY  - JOUR
AU  - Metod Saniga
AU  - Petr Pracna
TI  - A Jacobson Radical Decomposition of the Fano-Snowflake Configuration
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a71/
LA  - en
ID  - SIGMA_2008_4_a71
ER  - 
%0 Journal Article
%A Metod Saniga
%A Petr Pracna
%T A Jacobson Radical Decomposition of the Fano-Snowflake Configuration
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a71/
%G en
%F SIGMA_2008_4_a71
Metod Saniga; Petr Pracna. A Jacobson Radical Decomposition of the Fano-Snowflake Configuration. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a71/

[1] Brehm U., Greferath M., Schmidt S. E., “Projective geometry on modular lattices”, Handbook of Incidence Geometry, eds. F. Buekenhout, Elsevier, Amsterdam, 1995, 1115–1142 | MR

[2] Saniga M., Havlicek H., Planat M., Pracna P., “Twin “Fano-Snowflakes” over the smallest ring of ternions”, SIGMA, 4 (2008), 050, 7 pp., ages ; arXiv:0803.4436 | MR | Zbl

[3] Havlicek H., Saniga M., Vectors, cyclic submodules and projective spaces linked with ternions, arXiv:0806.3153 | MR

[4] Veldkamp F. D., “Projective planes over rings of stable rang 2”, Geom. Dedicata, 11 (1981), 285–308 | DOI | MR | Zbl

[5] Veldkamp F. D., “Geometry over rings”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 1033–1084 | MR

[6] Herzer A., “Chain geometries”, Handbook of Incidence Geometry, ed. F. Buekenhout, Elsevier, Amsterdam, 1995, 781–842 | MR

[7] Blunck A., Herzer A., Kettengeometrien – Eine Einführung, Shaker Verlag, Aachen, 2005 | MR | Zbl

[8] Brown E., “The many names of (7,3,1)”, Math. Mag., 75 (2002), 83–94 | MR | Zbl