The PBW Filtration, Demazure Modules and Toroidal Current Algebras
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $L$ be the basic (level one vacuum) representation of the affine Kac–Moody Lie algebra $\widehat{\mathfrak g}$. The $m$-th space $F_m$ of the PBW filtration on $L$ is a linear span of vectors of the form $x_1\cdots x_lv_0$, where $l\le m$, $x_i\in\widehat{\mathfrak g}$ and $v_0$ is a highest weight vector of $L$. In this paper we give two descriptions of the associated graded space $L^{\mathrm{gr}}$ with respect to the PBW filtration. The “top-down” description deals with a structure of $L^{\mathrm{gr}}$ as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field $e_\theta(z)^2$, which corresponds to the longest root $\theta$. The “bottom-up” description deals with the structure of $L^{\mathrm{gr}}$ as a representation of the current algebra $\mathfrak g\otimes\mathbb C[t]$. We prove that each quotient $F_m/F_{m-1}$ can be filtered by graded deformations of the tensor products of $m$ copies of $\mathfrak g$.
Keywords: affine Kac–Moody algebras; integrable representations; Demazure modules.
@article{SIGMA_2008_4_a69,
     author = {Evgeny Feigin},
     title = {The {PBW} {Filtration,} {Demazure} {Modules} and {Toroidal} {Current} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a69/}
}
TY  - JOUR
AU  - Evgeny Feigin
TI  - The PBW Filtration, Demazure Modules and Toroidal Current Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a69/
LA  - en
ID  - SIGMA_2008_4_a69
ER  - 
%0 Journal Article
%A Evgeny Feigin
%T The PBW Filtration, Demazure Modules and Toroidal Current Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a69/
%G en
%F SIGMA_2008_4_a69
Evgeny Feigin. The PBW Filtration, Demazure Modules and Toroidal Current Algebras. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a69/

[1] Ardonne E., Kedem R., “Fusion products of Kirillov–Reshetikhin modules and fermionic multiplicity formulas”, J. Algebra, 308 (2007), 270–294 ; math.RT/0602177 | DOI | MR | Zbl

[2] Ardonne E., Kedem R., Stone M., “Fusion products, Kostka polynomials and fermionic characters of $\widehat{su}(r+1)_k$”, J. Phys. A: Math. Gen., 38 (2005), 9183–9205 ; math-ph/0506071 | DOI | MR | Zbl

[3] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[4] Chari V., Le T., “Representations of double affine Lie algebras”, A Tribute to C. S. Seshadri (Chennai, 2002), Trends Math., Birkhäuser, Basel, 2003, 199–219 ; math.QA/0205312 | MR | Zbl

[5] Chari V., Loktev S.Weyl, “Demazure and fusion modules for the current algebra of $\mathfrak{sl}_{r+1}$”, Adv. Math., 207 (2006), 928–960 ; math.QA/0502165 | DOI | MR | Zbl

[6] Chari V., Presley A., “Weyl modules for classical and quantum affine algebras”, Represent. Theory, 5 (2001), 191–223 ; math.QA/0004174 | DOI | MR | Zbl

[7] Demazure M., “Désingularisation des variétés de Schubert généralisées”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 53–88 | MR | Zbl

[8] Di Francesco P., Mathieu P., Sénéchal D., Conformal field theory, Springer-Verlag, New York, 1997 | MR

[9] Feigin E., “Infinite fusion products and $\widehat{\mathfrak{sl}}_2$ cosets”, J. Lie Theory, 17 (2007), 145–161 ; math.QA/0603226 | MR | Zbl

[10] Feigin E., The PBW filtration, math.QA/0702797 | MR

[11] Feigin B., Feigin E., “$q$-characters of the tensor products in $\mathfrak{sl}_2$-case”, Moscow Math. J., 2:3 (2002), 567–588 ; math.QA/0201111 | MR | Zbl

[12] Feigin B., Feigin E., “Integrable $\widehat{\mathfrak{sl}}_2$-modules as infinite tensor products”, Fundamental Mathematics Today, eds. S. Lando and O. Sheinman, Independent University of Moscow, 2003, 304–334 ; math.QA/0205281 | MR

[13] Feigin B., Feigin E., Jimbo M., Miwa T., Takeyama Y., “A $\phi_{1,3}$-filtration on the Virasoro minimal series $M(p,p')$ with $1

'/p2$”, Publ. Res. Inst. Math. Sci., 44 (2008), 213–257 ; math.QA/0603070 | DOI | MR | Zbl

[14] Feigin B., Jimbo M., Kedem R., Loktev S., Miwa T., “Spaces of coinvariants and fusion product. I. From equivalence theorem to Kostka polynomials”, Duke. Math. J., 125 (2004), 549–588 ; ; Feigin B., Jimbo M., Kedem R., Loktev S., Miwa T., “Spaces of coinvariants and fusion product. II. $\widehat{\frak{sl}_2}$ character formulas in terms of Kostka polynomials”, J. Algebra, 279 (2004), 147–179 ; math.QA/0205324math.QA/0208156 | DOI | MR | Zbl | DOI | MR | Zbl

[15] Frenkel I. B., Kac V. G., “Basic representations of affine Lie algebras and dual resonance models”, Invent. Math., 62 (1980/1981), 23–66 | DOI | MR | Zbl

[16] Feigin B., Kirillov A. N., Loktev S., “Combinatorics and geometry of higher level Weyl modules”, Moscow Seminar on Mathematical Physics. II, Amer. Math. Soc. Transl. Ser. 2, 221, Amer. Math. Soc., Providence, RI, 2007, 33–47 ; math.QA/0503315 | MR | Zbl

[17] Feigin B., Loktev S., “On generalized Kostka polynomials and quantum Verlinde rule”, Differential Topology, Infinite-Dimensional Lie Algebras and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 61–79 ; math.QA/9812093 | MR | Zbl

[18] Fourier G., Littelmann P., “Tensor product structure of affine Demazure modules and limit constructions”, Nagoya Math. J., 182 (2006), 171–198 ; math.RT/0412432 | MR | Zbl

[19] Fourier G., Littelmann P., “Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions”, Adv. Math., 211 (2007), 566–593 ; math.RT/0509276 | DOI | MR | Zbl

[20] Hernandez D., “Quantum toroidal algebras and their representations”, Selecta Math., 14:3–4 (2009), 701–725 ; arXiv:0801.2397 | MR | Zbl

[21] Kac V., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR

[22] Kac V., Vertex algebras for begginers, University Lecture Series, 10, Amer. Math. Soc., Providence, RI, 1997 | MR

[23] Kedem R., “Fusion products, cohomology of $GL_N$ flag manifolds, and Kostka polynomials”, Int. Math. Res. Not., 2004:25 (2004), 1273–1298 ; math.RT/0312478 | DOI | MR | Zbl

[24] Kreiman V., Lakshmibai V., Magyar P., Weyman J., “Standard bases for affine $\mathrm{SL}(n)$-modules”, Int. Math. Res. Not., 2005:21 (2005), 1251–1276 ; math.RT/0411017 | DOI | MR | Zbl

[25] Kumar S., Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser Boston, Inc., Boston, MA, 2002 | MR | Zbl

[26] Loktev S., Weight multiplicity polynomials of multi-variable Weyl modules, arXiv:0806.0170