Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a sequel to [Caine A., Pickrell D., Int. Math. Res. Not., to appear, arXiv:0710.4484], where we studied the Hamiltonian systems which arise from the Evens–Lu construction of homogeneous Poisson structures on both compact and noncompact type symmetric spaces. In this paper we consider loop space analogues. Many of the results extend in a relatively routine way to the loop space setting, but new issues emerge. The main point of this paper is to spell out the meaning of the results, especially in the $SU(2)$ case. Applications include integral formulas and factorizations for Toeplitz determinants.
Keywords: Poisson structure; loop space; symmetric space; Toeplitz determinant.
@article{SIGMA_2008_4_a68,
     author = {Doug Pickrell},
     title = {Homogeneous {Poisson} {Structures} on {Loop} {Spaces} of {Symmetric} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a68/}
}
TY  - JOUR
AU  - Doug Pickrell
TI  - Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a68/
LA  - en
ID  - SIGMA_2008_4_a68
ER  - 
%0 Journal Article
%A Doug Pickrell
%T Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a68/
%G en
%F SIGMA_2008_4_a68
Doug Pickrell. Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a68/

[1] Brezis H., “New questions related to topological degree”, The Unity of Mathematics, Prog. Math., 244, Birkhäuser, Boston, MA, 2006, 137–154 | MR

[2] Caine A., “Compact symmetric spaces, triangular factorization, and Poisson geometry”, J. Lie Theory, 18 (2008), 273–294 ; math.SG/0608454 | MR | Zbl

[3] Caine A., Pickrell D., “Homogeneous Poisson structures on symmetric spaces”, Int. Math. Res. Not., 2009:1 (2009), 98–140 ; arXiv:0710.4484 | MR | Zbl

[4] Evens S., Lu J.-H., “On the variety of Lagrangian subalgebras. I”, Ann. Sci. École Norm. Sup. (4), 34 (2001), 631–668 ; math.DG/9909005 | MR | Zbl

[5] Kac V., Infinite-dimensional Lie algebras. An introduction, Birkhäuser, Boston, MA, 1983 | MR | Zbl

[6] Kac V., “Constructing groups from infinite-dimensional Lie algebras”, Infinite-Dimensional Groups with Applications (Berkeley, Calif., 1984), Math. Sci. Res. Inst. Publ., 4, ed. V. Kac, Springer, New York, 1985, 167–216 | MR

[7] Lu J.-H., “Coordinates on Schubert cells, Kostant's harmonic forms, and the Bruhat–Poisson structure on $G/B$”, Transform. Groups, 4 (1999), 355–374 ; dg-ga/9610009 | DOI | MR

[8] Odzijewicz A., Ratiu T., “Banach Lie–Poisson spaces and reduction”, Comm. Math. Phys., 243 (2003), 1–54 ; math.SG/0210207 | DOI | MR | Zbl

[9] Pickrell D., “An invariant measure for the loop space of a simply connected compact symmetric space”, J. Funct. Anal., 234 (2006), 321–363 ; math-ph/0409013 | DOI | MR | Zbl

[10] Pickrell D., A survey of conformally invariant measures on $H^m(\Delta )$, math.PR/0702672

[11] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986 | MR | Zbl

[12] Widom H., “Asymptotic behavior of block Toeplitz matrices and determinants. II”, Adv. Math., 21 (1976), 1–29 | DOI | MR | Zbl