@article{SIGMA_2008_4_a68,
author = {Doug Pickrell},
title = {Homogeneous {Poisson} {Structures} on {Loop} {Spaces} of {Symmetric} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a68/}
}
Doug Pickrell. Homogeneous Poisson Structures on Loop Spaces of Symmetric Spaces. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a68/
[1] Brezis H., “New questions related to topological degree”, The Unity of Mathematics, Prog. Math., 244, Birkhäuser, Boston, MA, 2006, 137–154 | MR
[2] Caine A., “Compact symmetric spaces, triangular factorization, and Poisson geometry”, J. Lie Theory, 18 (2008), 273–294 ; math.SG/0608454 | MR | Zbl
[3] Caine A., Pickrell D., “Homogeneous Poisson structures on symmetric spaces”, Int. Math. Res. Not., 2009:1 (2009), 98–140 ; arXiv:0710.4484 | MR | Zbl
[4] Evens S., Lu J.-H., “On the variety of Lagrangian subalgebras. I”, Ann. Sci. École Norm. Sup. (4), 34 (2001), 631–668 ; math.DG/9909005 | MR | Zbl
[5] Kac V., Infinite-dimensional Lie algebras. An introduction, Birkhäuser, Boston, MA, 1983 | MR | Zbl
[6] Kac V., “Constructing groups from infinite-dimensional Lie algebras”, Infinite-Dimensional Groups with Applications (Berkeley, Calif., 1984), Math. Sci. Res. Inst. Publ., 4, ed. V. Kac, Springer, New York, 1985, 167–216 | MR
[7] Lu J.-H., “Coordinates on Schubert cells, Kostant's harmonic forms, and the Bruhat–Poisson structure on $G/B$”, Transform. Groups, 4 (1999), 355–374 ; dg-ga/9610009 | DOI | MR
[8] Odzijewicz A., Ratiu T., “Banach Lie–Poisson spaces and reduction”, Comm. Math. Phys., 243 (2003), 1–54 ; math.SG/0210207 | DOI | MR | Zbl
[9] Pickrell D., “An invariant measure for the loop space of a simply connected compact symmetric space”, J. Funct. Anal., 234 (2006), 321–363 ; math-ph/0409013 | DOI | MR | Zbl
[10] Pickrell D., A survey of conformally invariant measures on $H^m(\Delta )$, math.PR/0702672
[11] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986 | MR | Zbl
[12] Widom H., “Asymptotic behavior of block Toeplitz matrices and determinants. II”, Adv. Math., 21 (1976), 1–29 | DOI | MR | Zbl