Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove inversion formulas for the Dunkl intertwining operator $V_k$ and for its dual ${}^tV_k$ and we deduce the expression of the representing distributions of the inverse operators $V^{-1}_k$ and ${}^tV_k^{-1}$, and we give some applications.
Keywords: inversion formulas; Dunkl intertwining operator; dual Dunkl intertwining operator.
@article{SIGMA_2008_4_a66,
     author = {Khalifa Trim\`eche},
     title = {Inversion {Formulas} for the {Dunkl} {Intertwining} {Operator} and {Its} {Dual} on {Spaces} of {Functions} and {Distributions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a66/}
}
TY  - JOUR
AU  - Khalifa Trimèche
TI  - Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a66/
LA  - en
ID  - SIGMA_2008_4_a66
ER  - 
%0 Journal Article
%A Khalifa Trimèche
%T Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a66/
%G en
%F SIGMA_2008_4_a66
Khalifa Trimèche. Inversion Formulas for the Dunkl Intertwining Operator and Its Dual on Spaces of Functions and Distributions. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a66/

[1] Chazarain J., Piriou A., Introduction to the theory of linear partial differential equations, North-Holland Publishing Co., Amsterdam – New York, 1982 | MR | Zbl

[2] van Diejen J. F., “Confluent hypergeometric orthogonal polynomials related to the rational quantum Calogero system with harmonic confinement”, Comm. Math. Phys., 188 (1997), 467–497 ; q-alg/9609032 | DOI | MR | Zbl

[3] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[4] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | MR | Zbl

[5] Dunkl C. F., “Hankel transform associated to finite reflection groups”, Hypergeometric functions on domains of positivity, Jack polynomials, and applications, Contemp. Math., 138, 1992, 123–138 | MR | Zbl

[6] Heckman G. J., “An elementary approach to the hypergeometric shift operators of Opdam”, Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl

[7] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990 | MR

[8] Hikami K., “Dunkl operators formalism for quantum many-body problems associated with classical root systems”, J. Phys. Soc. Japan, 65 (1996), 394–401 | DOI | MR | Zbl

[9] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl

[10] de Jeu M. F. E., “Paley–Wiener theorems for the Dunkl transform”, Trans. Amer. Math. Soc., 258 (2006), 4225–4250 ; math.CA/0404439 | DOI | MR

[11] Kakei S., “Common algebraic structure for the Calogero–Sutherland models”, J. Phys. A: Math. Gen., 29 (1996), L619–L624 ; solv-int/9608009 | DOI | MR | Zbl

[12] Lapointe M., Vinet L., “Exact operator solution of the Calogero–Sutherland model”, Comm. Math. Phys., 178 (1996), 425–452 ; q-alg/9509003 | DOI | MR | Zbl

[13] Rösler M., Voit M., “Markov processes related with Dunkl operators”, Adv. in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl

[14] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke. Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl

[15] Trimèche K., “The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual”, Integral Transform. Spec. Funct., 12 (2001), 349–374 | DOI | MR | Zbl

[16] Trimèche K., Generalized harmonic analysis and wavelet packets, Gordon and Breach Science Publishers, Amsterdam, 2001 | MR | Zbl

[17] Trimèche K., “Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl