$\mathfrak{sl}(2)$-Trivial Deformations of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$-Modules of Symbols
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the action of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$ by Lie derivative on the spaces of symbols of differential operators. We study the deformations of this action that become trivial once restricted to $\mathfrak{sl}(2)$. Necessary and sufficient conditions for integrability of infinitesimal deformations are given.
Keywords: tensor densities, cohomology
Mots-clés : deformations.
@article{SIGMA_2008_4_a64,
     author = {Mabrouk Ben Ammar and Maha Boujelbene},
     title = {$\mathfrak{sl}(2)${-Trivial} {Deformations} of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)${-Modules} of {Symbols}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a64/}
}
TY  - JOUR
AU  - Mabrouk Ben Ammar
AU  - Maha Boujelbene
TI  - $\mathfrak{sl}(2)$-Trivial Deformations of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$-Modules of Symbols
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a64/
LA  - en
ID  - SIGMA_2008_4_a64
ER  - 
%0 Journal Article
%A Mabrouk Ben Ammar
%A Maha Boujelbene
%T $\mathfrak{sl}(2)$-Trivial Deformations of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$-Modules of Symbols
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a64/
%G en
%F SIGMA_2008_4_a64
Mabrouk Ben Ammar; Maha Boujelbene. $\mathfrak{sl}(2)$-Trivial Deformations of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$-Modules of Symbols. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a64/

[1] Agrebaoui B., Ben Fraj N., Ben Ammar M., Ovsienko V., “Deformation of modules of differential forms”, J. Nonlinear Math. Phys., 10 (2003), 148–156 ; math.QA/0310494 | DOI | MR | Zbl

[2] Agrebaoui B., Ammar F., Lecomte P., Ovsienko V., “Multi-parameter deformations of the module of symbols of differential operators”, Int. Math. Res. Not., 2002:16 (2002), 847–869 ; math.QA/0011048 | DOI | MR | Zbl

[3] Bouarroudj S., “On $\frak{sl}(2)$-relative cohomology of the Lie algebra of vector fields and differential operators”, J. Nonlinear Math. Phys., 14 (2007), 112–127 ; math.DG/0502372 | DOI | MR | Zbl

[4] Bouarroudj S., Ovsienko V., “Three cocycles on Diff($S^1$) generalizing the Schwarzian derivative”, Int. Math. Res. Not., 1998:1 (1998), 25–39 ; dg-ga/9710018 | DOI | MR | Zbl

[5] Fialovski A., “Deformations of Lie algebras”, Mat. Sb., 127(169):4(8) (1985), 476–482 | MR | Zbl

[6] Fialowski A., “An example of formal deformations of Lie algebras”, Deformation Theory of Algebras and Structures and Applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 247, Kluwer Acad. Publ., Dordrecht, 1988, 375–401 | MR

[7] Fialowski A., Fuchs D. B., “Construction of miniversal deformations of Lie algebras”, J. Funct. Anal., 161 (1999), 76–110 ; math.RT/0006117 | DOI | MR | Zbl

[8] Fuchs D. B., Cohomology of infinite-dimensional Lie algebras, Consultants Bureau, New York, 1987 | MR

[9] Gargoubi H., “Sur la géométrie de l'espace des opérateurs différentiels linéaires sur $\mathbb R$”, Bull. Soc. Roy. Sci. Liège, 69 (2000), 21–47 | MR | Zbl

[10] Gargoubi H., Mellouli N., Ovsienko V., “Differential operators on supercircle: conformally equivariant quantization and symbol calculus”, Lett. Math. Phys., 79 (2007), 51–65 ; math-ph/0610059 | DOI | MR | Zbl

[11] Gordan P., Invariantentheorie, Teubner, Leipzig, 1887 | Zbl

[12] Nijenuis A., Richardson R. W. Jr., “Deformations of homomorphisms of Lie groups and Lie algebras”, Bull. Amer. Math. Soc., 73 (1967), 175–179 | DOI | MR

[13] Ovsienko V., Roger C., “Deforming the Lie algebra of vector fields on $S^1$ inside the Lie algebra of pseudodifferential operators on $S^1$”, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 211–226 ; math.QA/9812074 | MR | Zbl

[14] Ovsienko V., Roger C., “Deforming the Lie algebra of vector fields on $S^1$ inside the Poisson algebra on $\dot T^* S^1$”, Comm. Math. Phys., 198 (1998), 97–110 ; q-alg/9707007 | DOI | MR | Zbl

[15] Richardson R. W., “Deformations of subalgebras of Lie algebras”, J. Differential Geom., 3 (1969), 289–308 | MR | Zbl