Hochschild Homology and Cohomology of Klein Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Within the framework of deformation quantization, a first step towards the study of star-products is the calculation of Hochschild cohomology. The aim of this article is precisely to determine the Hochschild homology and cohomology in two cases of algebraic varieties. On the one hand, we consider singular curves of the plane; here we recover, in a different way, a result proved by Fronsdal and make it more precise. On the other hand, we are interested in Klein surfaces. The use of a complex suggested by Kontsevich and the help of Groebner bases allow us to solve the problem.
Keywords: Hochschild cohomology; Hochschild homology; Klein surfaces; Groebner bases; quantization; star-products.
@article{SIGMA_2008_4_a63,
     author = {Fr\'ed\'eric Butin},
     title = {Hochschild {Homology} and {Cohomology} of {Klein} {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a63/}
}
TY  - JOUR
AU  - Frédéric Butin
TI  - Hochschild Homology and Cohomology of Klein Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a63/
LA  - en
ID  - SIGMA_2008_4_a63
ER  - 
%0 Journal Article
%A Frédéric Butin
%T Hochschild Homology and Cohomology of Klein Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a63/
%G en
%F SIGMA_2008_4_a63
Frédéric Butin. Hochschild Homology and Cohomology of Klein Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a63/

[1] Alev J., Farinati M. A., Lambre T., Solotar A. L., “Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini”, J. Algebra, 232 (2000), 564–577 | DOI | MR | Zbl

[2] Alev J., Lambre T., “Comparaison de l'homologie de Hochschild et de l'homologie de Poisson pour une déformation des surfaces de Klein”, Algebra and Operator Theory (Tashkent, 1997), Kluwer Acad. Publ., Dordrecht, 1998, 25–38 | MR | Zbl

[3] Arnold V., Varchenko A., Goussein-Zadé S., Singularités des applications différentiables, première partie, Mir, Moscou, 1986

[4] Bruguières A., Cattaneo A., Keller B., Torossian C., Déformation, Quantification, Théorie de Lie, Panoramas et Synthèses, 20, SMF, 2005

[5] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl

[6] Crawley-Boevey W., Holland M. P., “Noncommutative deformations of Kleinian singularities”, Duke Math. J., 92 (1998), 605–635 | DOI | MR | Zbl

[7] Chiang L., Chu H., Kang M. C., “Generation of invariants”, J. Algebra, 221 (1999), 232–241 | DOI | MR | Zbl

[8] Fronsdal C., Kontsevich M., “Quantization on curves”, Lett. Math. Phys., 79 (2007), 109–129 ; math-ph/0507021 | DOI | MR

[9] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math. (2), 78 (1963), 267–288 | DOI | MR | Zbl

[10] Guieu L., Roger C., L'Algèbre et le Groupe de Virasoro: aspects géométriques et algébriques, généralisations, série “Monographies, notes de cours et Actes de conférences”, PM28, Publication du Centre de Recherches Mathématiques de Montréal, 2007, avec un appendice de Sergiescu V. | MR | Zbl

[11] Kontsevich M., Deformation quantization of Poisson manifolds. I, Preprint, IHES, 1997 ; q-alg/9709040 | MR

[12] Loday J. L., Cyclic homology, Springer-Verlag, Berlin, 1998 | MR

[13] Pichereau A., “Cohomologie de Poisson en dimension trois”, C. R. Math. Acad. Sci. Paris, 340 (2005), 151–154 | MR | Zbl

[14] Pichereau A., “Poisson (co)homology and isolated singularities”, J. Algebra, 299 (2006), 747–777 ; math.QA/0511201 | DOI | MR | Zbl

[15] Rannou E., Saux-Picart P., Cours de calcul formel, partie II, éditions Ellipses, 2002

[16] Roger C., Vanhaecke P., “Poisson cohomology of the affine plane”, J. Algebra, 251 (2002), 448–460 | DOI | MR | Zbl

[17] Springer T. A., Invariant theory, Lecture Notes in Math., 585, Springer-Verlag, 1977 | MR | Zbl

[18] Van den Bergh M., “Noncommutative homology of some three-dimensional quantum spaces”, $K$-Theory, 8 (1994), 213–230, Proceedings of Conference on Algebraic Geometry and Ring Theory in honor of Michael Artin, Part III (Antwerp., 1992) | DOI | MR | Zbl