Exterior Differential Systems for Yang–Mills Theories
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exterior differential systems are given, and their Cartan characters calculated, for Maxwell and $SU(2)$-Yang–Mills equations in dimensions from three to six.
Keywords: exterior differential systems; Cartan characters; Maxwell equations; $SU(2)$-Yang–Mills equations.
@article{SIGMA_2008_4_a62,
     author = {Frank B. Estabrook},
     title = {Exterior {Differential} {Systems} for {Yang{\textendash}Mills} {Theories}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a62/}
}
TY  - JOUR
AU  - Frank B. Estabrook
TI  - Exterior Differential Systems for Yang–Mills Theories
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a62/
LA  - en
ID  - SIGMA_2008_4_a62
ER  - 
%0 Journal Article
%A Frank B. Estabrook
%T Exterior Differential Systems for Yang–Mills Theories
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a62/
%G en
%F SIGMA_2008_4_a62
Frank B. Estabrook. Exterior Differential Systems for Yang–Mills Theories. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a62/

[1] Hermann R., Yang–Mills, Kaluza–Klein and the Einstein Program, Appendix D, Interdisciplinary Mathematics, 19, Math Sci Press, Brookline, Mass., 1978 | MR | Zbl

[2] Hermann R., “Differential form methods in the theory of variational systems and Lagrangian field theories”, Acta Appl. Math., 12 (1998), 35–78 | MR

[3] Estabrook F. B., “Conservation laws for vacuum tetrad gravity”, Classical Quantum Gravity, 23 (2006), 2841–2848 ; gr-qc/0508081 | DOI | MR | Zbl

[4] Estabrook F. B., “Mathematical structure of tetrad equations for vacuum relativity”, Phys. Rev. D, 71 (2005), 044004, 5 pp., ages ; gr-qc/0411029 | DOI | MR

[5] Hojman S., “Problem of the identical vanishing of Euler–Lagrange derivatives in field theory”, Phys. Rev., 27 (1983), 451–453 | MR

[6] Betounes D. E., “Extension of the classical Cartan form”, Phys. Rev. D, 29 (1984), 599–606 | DOI | MR

[7] Bryant R., Griffiths P., Grossman D., Exterior differential systems and Euler–Lagrange partial differential equations, The University of Chicago Press, Chicago – London, 2003 | MR

[8] Wahlquist H. D., “Monte Carlo calculation of Cartan characters”, Proceedings of the International Conference of Aspects of General Relativity and Mathematical Physics, eds. N. Breton, R. Capovilla and T. Matos, Ediciones CINVESTAV, Mexico DF, 1994, 168–174

[9] Schwinger J., DeRaad L. L. Jr., Milton K. A., Tsai W.-Y., Classical electrodynamics, Westview Press, Boulder CO, 1998