@article{SIGMA_2008_4_a60,
author = {Sebastian Guttenberg and George Savvidy},
title = {Schwinger{\textendash}Fronsdal {Theory} of {Abelian} {Tensor} {Gauge} {Fields}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a60/}
}
Sebastian Guttenberg; George Savvidy. Schwinger–Fronsdal Theory of Abelian Tensor Gauge Fields. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a60/
[1] Schwinger J., Particles, sources, and fields, Addison-Wesley, Reading, MA, 1970
[2] Fronsdal C., “Massless fields with integer spin”, Phys. Rev. D, 18 (1978), 3624–3629 | DOI
[3] Singh L. P. S., Hagen C. R., “Lagrangian formulation for arbitrary spin. I. The boson case”, Phys. Rev. D, 9 (1974), 898–909 | DOI
[4] Feynman R. P., Feynman lecture on gravitation, Westview Press, 2002
[5] Fierz M., “Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin”, Helv. Phys. Acta., 12 (1939), 3–27 | DOI
[6] Chang S. J., “Lagrange formulation for systems with higher spin”, Phys. Rev., 161 (1967), 1308–1315 | DOI
[7] van Dam H., Veltman M. J. G., “Massive and massless Yang–Mills and gravitational fields”, Nuclear Phys. B, 22 (1970), 397–411 | DOI
[8] Curtright T., “Massless field supermultiplets with arbitrary spin”, Phys. Lett. B, 85 (1979), 219–224 | DOI
[9] Bengtsson A. K., Bengtsson I., Brink L., “Cubic interaction terms for arbitrary spin”, Nuclear Phys. B, 227 (1983), 31–40 | DOI | MR
[10] Bengtsson A. K., Bengtsson I., Brink L., “Cubic interaction terms for arbitrarily extended supermultiplets”, Nuclear Phys. B, 227 (1983), 41–49 | DOI | MR
[11] Bengtsson A. K. H., Bengtsson I., Linden N., “Interacting higher spin gauge fields on the light front”, Classical Quantum Gravity, 4 (1987), 1333–1345 | DOI | MR
[12] Berends F. A., Burgers G. J. H., van Dam H., “On the theoretical problems in constructing interactions involving higher-spin massless particles”, Nuclear Phys. B, 260 (1985), 295–322 | DOI | MR
[13] Berends F. A., Burgers G. J. H., van Dam H., “On spin three selfinteractions”, Z. Phys. C, 24 (1984), 247–254 | DOI | MR
[14] de Wit B., Freedman D. Z., “Systematics of higher spin gauge fields”, Phys. Rev. D (3), 21 (1980), 358–367 | DOI | MR
[15] Bengtsson A. K. H., “Structure of higher spin gauge interactions”, J. Math. Phys., 48 (2007), 072302, 35 pp., ages ; hep-th/0611067 | DOI | MR | Zbl
[16] Savvidy G., Non-Abelian tensor gauge fields: enhanced symmetries, , see Section 6 hep-th/0604118
[17] Bengtsson A. K. H., “Towards unifying structures in higher spin gauge symmetry”, SIGMA, 4 (2008), 013, 23 pp., ages ; arXiv:0802.0479 | MR | Zbl
[18] Bekaert X., Cnockaert S., Iazeolla C., Vasiliev M. A., Nonlinear higher spin theories in various dimensions, hep-th/0503128
[19] Vasiliev M. A., “Higher-spin gauge theories in four, three and two dimensions”, Internat. J. Modern Phys. D, 5 (1996), 763–797 ; hep-th/9611024 | DOI | MR
[20] Vasiliev M. A., Higher spin gauge theories: star-product and AdS space, hep-th/9910096 | MR
[21] Engquist J., Sezgin E., Sundell P., “On $N=1,2,4$ higher spin gauge theories in four dimensions”, Classical Quantum Gravity, 19 (2002), 6175–6196 ; hep-th/0207101 | DOI | MR | Zbl
[22] Sezgin E., Sundell P., “Holography in 4D (super) higher spin theories and a test via cubic scalar couplings”, J. High Energy Phys., 2005:7 (2005), 044, 26 pp., ages ; hep-th/0305040 | DOI | MR
[23] Francia D., Sagnotti A., “On the geometry of higher-spin gauge fields”, Classical Quantum Gravity, 20 (2003), S473–S486 ; hep-th/0212185 | DOI | MR
[24] Francia D., Mourad J., Sagnotti A., “Current exchanges and unconstrained higher spins”, Nuclear Phys. B, 773 (2007), 203–237 ; hep-th/0701163 | DOI | MR | Zbl
[25] Sorokin D., “Introduction to the classical theory of higher spins”, Fundamental interactions and twistor-like methods, AIP Conf.Proc., 767, Amer. Inst. Phys., Melville, NY, 2005, 172–202 ; hep-th/0405069 | MR | Zbl
[26] Francia D., Sagnotti A., “Free geometric equations for higher spins”, Phys. Lett. B, 543 (2002), 303–310 ; hep-th/0207002 | DOI | MR | Zbl
[27] Savvidy G., “Non-Abelian tensor gauge fields: generalization of Yang–Mills theory”, Phys. Lett. B, 625 (2005), 341–350 ; hep-th/0509049 | DOI | MR
[28] Savvidy G., “Non-Abelian tensor gauge fields. I”, Internat. J. Modern Phys. A, 21 (2006), 4931–4957 | DOI | MR | Zbl
[29] Savvidy G., “Non-Abelian tensor gauge fields. II”, Internat. J. Modern Phys. A, 21 (2006), 4959–4977 | DOI | MR | Zbl
[30] Barrett J. K., Savvidy G., “A dual Lagrangian for non-Abelian tensor gauge fields”, Phys. Lett. B, 652 (2007), 141–145 ; arXiv:0704.3164 | DOI | MR
[31] Weinberg S., “Feynman rules for any spin”, Phys. Rev. (2), 133 (1964), B1318–B1332 | DOI | MR
[32] Weinberg S., The quantum theory of fields. Vol. 1. Foundations, Cambridge University Press, Cambridge, 1995
[33] Konitopoulos S., Savvidy G., Production of spin-two gauge bosons, arXiv:0804.0847 | Zbl