@article{SIGMA_2008_4_a6,
author = {Teunis C. Dorlas and Wolodymyr I. Skrypnik},
title = {Three {Order} {Parameters} in {Quantum} {XZ} {Spin-Oscillator} {Models} with {Gibbsian} {Ground} {States}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a6/}
}
TY - JOUR AU - Teunis C. Dorlas AU - Wolodymyr I. Skrypnik TI - Three Order Parameters in Quantum XZ Spin-Oscillator Models with Gibbsian Ground States JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a6/ LA - en ID - SIGMA_2008_4_a6 ER -
%0 Journal Article %A Teunis C. Dorlas %A Wolodymyr I. Skrypnik %T Three Order Parameters in Quantum XZ Spin-Oscillator Models with Gibbsian Ground States %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a6/ %G en %F SIGMA_2008_4_a6
Teunis C. Dorlas; Wolodymyr I. Skrypnik. Three Order Parameters in Quantum XZ Spin-Oscillator Models with Gibbsian Ground States. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a6/
[1] Kobayashi K., “Dynamical theory of the phase transition in $\rm KH_2PO_4$-type ferroelectric crystals”, J. Phys. Soc. Japan, 24 (1968), 497–508 | DOI
[2] Villain J., Stamenkovic S., “Atomic motion in hydrogen-bond ferroelectrics”, Phys. Stat. Sol., 15 (1966), 585–596 | DOI
[3] Kurbatov A., Plechko V., “Exactly solvable model with order-disorder phase transition for ferroelectrics”, Teoret. Mat. Fiz., 26 (1976), 109–116
[4] Bogolyubov N. N. Jr., Brankov J. G., Kurbatov A. M., Tonchev N. C., Zagrebnov V. A., Method of approximating Hamiltonian in statistical physics, Sophia, 1981
[5] Kirkwood J., Thomas L., “Expansions and phase transitions for the ground state of quantum Ising lattice systems”, Comm. Math. Phys., 88 (1983), 569–580 | DOI | MR
[6] Matsui T., “A link between quantum and classical Potts models”, J. Statist. Phys., 59 (1990), 781–798 | DOI | MR | Zbl
[7] Matsui T., “Uniqueness of the translationally invariant ground state in quantum spin systems”, Comm. Math. Phys., 126 (1990), 453–467 | DOI | MR | Zbl
[8] Datta N., Kennedy T., “Expansions of one quasiparticle states in spin-$1/2$ systems”, J. Statist. Phys., 108 (2002), 373–399 ; cond-mat/0104199 | DOI | MR | Zbl
[9] Goderis D., Maes C., “Constructing quantum dissipations and their reversible states from classical interacting spin systems”, Ann. Inst. H. Poincaré Phys. Théor., 55 (1991), 805–828 | MR | Zbl
[10] Dorlas T., Skrypnik W., “On quantum XZ $1/2$ spin models with Gibbsian ground states”, J. Phys. A: Math. Gen., 37 (2004), 66623–6632 | DOI | MR
[11] Skrypnik W., “Order parameters in XXZ-type spin $\frac12$ quantum models with Gibbsian ground states”, SIGMA, 2 (2006), 011, 6 pp., ages ; math-ph/0601060 | MR | Zbl
[12] Skrypnik W., “Quantum spin XXZ-type models with Gibbsian ground states and double long-range order”, Phys. Lett. A, 371 (2007), 363–373 | DOI | MR
[13] Messager A., Nachtergaele B., “A model with simultaneous first and second order phase transitions”, J. Statist. Phys., 122 (2006), 1–14 ; cond-mat/0501229 | DOI | MR | Zbl
[14] van Enter A. C. D., Shlosman S. B., “First-order transitions for $n$-vector models in two and more dimensions; rigorous proof”, Phys. Rev. Lett., 89 (2002), 285702, 3 pp., ages ; cond-mat/0205455 | DOI
[15] van Enter A. C. D., Shlosman S. B., “Provable first-order transitions for liquid crystal and lattice gauge models with continuous symmetries”, Comm. Math. Phys., 255 (2005), 21–32 ; cond-mat/0306362 | DOI | MR | Zbl
[16] Thomas L. E., “Quantum Heisenberg ferromagnets and stochastic exclusion processes”, J. Math. Phys., 21 (1980), 1921–1924 | DOI | MR | Zbl
[17] Skrypnik W., “Long-range order in nonequilibrium systems of interacting Brownian linear oscillators”, J. Statist. Phys., 111 (2003), 291–321 | DOI | MR | Zbl
[18] Reed M., Simon B., Methods of modern mathematical physics, Vols. II, IV, Academic Press, 1975 | Zbl
[19] Ginibre J., “Reduced density matrices of quantum gases. I. Limit of infinite volume”, J. Math. Phys., 6 (1964), 238–251 | DOI | MR
[20] Kato T., Perturbation theory for linear operators, Springer-Verlag, 1966 | MR
[21] Gantmacher F. R., Matrix theory, 4th ed., Nauka, Moscow, 1988
[22] Gantmacher F. R., Applications of the theory of matrices, Interscience Publ., New York, 1959 | MR | Zbl
[23] Kelly D., Sherman S., “Inequalities on correlations in Ising ferromagnets”, J. Math. Phys., 9 (1968), 466–483 | DOI
[24] Bricmont J., Fontaine J.-R., “Correlation inequalities and contour estimates”, J. Statist. Phys., 26 (1981), 745–753 | DOI | MR | Zbl
[25] Fröhlich J., Lieb E., “Phase transitions in anisotropic lattice spin systems”, Comm. Math. Phys., 60 (1978), 233–267 | DOI | MR
[26] Skrypnik W., “Long-range order in linear ferromagnetic oscillator systems. Strong pair quadratic $n-n$ potential”, Ukrainian Math. J., 56 (2004), 964–972 | DOI | MR | Zbl
[27] Affleck I., Kennedy T., Lieb E., Tasaki H., “Valence bond ground states in isotropic quantum antiferromagnets”, Comm. Math. Phys., 115 (1988), 477–528 | DOI | MR
[28] Izenman M., “Translation invariance and instability of phase coexistence in the teo dimensional Ising system”, Comm. Math. Phys., 73 (1980), 84–92
[29] Koma T., Tasaki H., “Symmetry breaking and finite-size effects in quantum many-body systems”, J. Statist. Phys., 76 (1994), 745–803 ; cond-mat/9708132 | DOI | MR | Zbl