Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove a conjecture of B. Shoikhet. This conjecture states that the tangent isomorphism on homology, between the Poisson homology associated to a Poisson structure on $\mathbb R^d$ and the Hochschild homology of its quantized star-product algebra, is an isomorphism of modules over the (isomorphic) respective cohomology algebras. As a consequence, we obtain a version of the Duflo isomorphism on coinvariants.
Keywords: deformation quantization; formality theorems; cap-products; Duflo isomorphism.
@article{SIGMA_2008_4_a59,
     author = {Damien Calaque and Carlo A. Rossi},
     title = {Shoikhet's {Conjecture} and {Duflo} {Isomorphism} on {(Co)Invariants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2008},
     volume = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a59/}
}
TY  - JOUR
AU  - Damien Calaque
AU  - Carlo A. Rossi
TI  - Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2008
VL  - 4
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a59/
LA  - en
ID  - SIGMA_2008_4_a59
ER  - 
%0 Journal Article
%A Damien Calaque
%A Carlo A. Rossi
%T Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants
%J Symmetry, integrability and geometry: methods and applications
%D 2008
%V 4
%U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a59/
%G en
%F SIGMA_2008_4_a59
Damien Calaque; Carlo A. Rossi. Shoikhet's Conjecture and Duflo Isomorphism on (Co)Invariants. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a59/

[1] Arnal D., Manchon D., Masmoudi M., “Choix des signes pour la formalité de M. Kontsevich”, Pacific J. Math., 203 (2002), 23–66 ; math.QA/0003003 | DOI | MR | Zbl

[2] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl

[3] Calaque D., Rossi C. A., Lectures on Duflo isomorphisms in Lie algebras and complex geometry, http://math.univ-lyon1.fr/~calaque/LectureNotes/LectETH.pdf

[4] Calaque D., Rossi C. A., Compatibility with cap-products in Tsygan's formality and homological Duflo isomorphism,, arXiv:0805.3444

[5] Cattaneo A. S., Keller B., Torossian Ch., Bruguières A., Déformation, quantification, théorie de Lie, Panoramas et Synthèses, 20, SMF, Paris, 2005 | MR

[6] Duflo M., “Opérateurs différentiels bi-invariants sur un groupe de Lie”, Ann. Sci. École Norm. Sup. (4), 10 (1977), 265–288 | MR | Zbl

[7] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | Zbl

[8] Manchon D., Torossian Ch., “Cohomologie tangente et cup-produit pour la quantification de Kontsevich”, Ann. Math. Blaise Pascal, 10 (2003), 75–106 ; math.QA/0106205 | MR | Zbl

[9] Pevzner M., Torossian Ch., “Isomorphisme de Duflo et la cohomologie tangentielle”, J. Geom. Phys., 51 (2004), 487–506 ; math.QA/0310128 | DOI | MR

[10] Shoikhet B., “A proof of the Tsygan formality conjecture for chains”, Adv. Math., 179 (2003), 7–37 ; math.QA/0010321 | DOI | MR | Zbl

[11] Shoikhet B., “Vanishing of the Kontsevich integrals of the wheels”, EuroConférence Moshé Flato 2000, Part II (Dijon), Lett. Math. Phys., 56 (2001), 141–149 ; math.QA/0007080 | DOI | MR | Zbl

[12] Tamarkin D., Tsygan B., “Cyclic formality and index theorems”, EuroConférence Moshé Flato 2000, Part II (Dijon), Lett. Math. Phys., 56 (2001), 85–97 | DOI | MR | Zbl

[13] Tsygan B., “Formality conjectures for chains”, Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 261–274 ; math.QA/9904132 | MR | Zbl