Projections of Singular Vectors of Verma Modules over Rank 2 Kac–Moody Lie Algebras
Symmetry, integrability and geometry: methods and applications, Tome 4 (2008)
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove an explicit formula for a projection of singular vectors in the Verma module over a rank 2 Kac–Moody Lie algebra onto the universal enveloping algebra of the Heisenberg Lie algebra and of $sl_{2}$ (Theorem 3). The formula is derived from a more general but less explicit formula due to Feigin, Fuchs and Malikov [Funct. Anal. Appl. 20 (1986), no. 2, 103–113]. In the simpler case of $\mathcal A_1^1$ the formula was obtained in [Fuchs D., Funct. Anal. Appl. 23 (1989), no. 2, 154–156].
Keywords:
Kac–Moody algebras; Verma modules; singular vectors.
@article{SIGMA_2008_4_a58,
author = {Dmitry Fuchs and Constance Wilmarth},
title = {Projections of {Singular} {Vectors} of {Verma} {Modules} over {Rank~2} {Kac{\textendash}Moody} {Lie} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a58/}
}
TY - JOUR AU - Dmitry Fuchs AU - Constance Wilmarth TI - Projections of Singular Vectors of Verma Modules over Rank 2 Kac–Moody Lie Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a58/ LA - en ID - SIGMA_2008_4_a58 ER -
%0 Journal Article %A Dmitry Fuchs %A Constance Wilmarth %T Projections of Singular Vectors of Verma Modules over Rank 2 Kac–Moody Lie Algebras %J Symmetry, integrability and geometry: methods and applications %D 2008 %V 4 %U http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a58/ %G en %F SIGMA_2008_4_a58
Dmitry Fuchs; Constance Wilmarth. Projections of Singular Vectors of Verma Modules over Rank 2 Kac–Moody Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a58/
[1] Funct. Anal. Appl., 5:1 (1971), 1–8 | DOI | MR | Zbl
[2] Feigin B. L., Fuchs D. B., “Verma modules over the Virasoro algebra”, Topology (Leningrad, 1982), Lecture Notes in Math., 1060, Springer, Berlin, 1984, 230–245 | MR
[3] Funct. Anal. Appl., 23:2 (1989), 154–156 | DOI | MR
[4] Kac V., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR
[5] Kac V., Kazhdan D., “Structure of representations with highest weight of infinite-dimensional Lie algebras”, Adv. in Math., 34 (1979), 97–108 | DOI | MR | Zbl
[6] Funct. Anal. Appl., 20:2 (1986), 103–113 | DOI | MR | Zbl