@article{SIGMA_2008_4_a57,
author = {Dennis The},
title = {Contact {Geometry} of {Hyperbolic} {Equations} of {Generic} {Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a57/}
}
Dennis The. Contact Geometry of Hyperbolic Equations of Generic Type. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a57/
[1] Anderson I. M., Kamran N., Olver P. J., “Internal, external, and generalized symmetries”, Adv. Math., 100 (1993), 53–100 | DOI | MR | Zbl
[2] Biesecker M., Geometric studies in hyperbolic systems in the plane, Ph.D. Thesis, Utah State University, 2003
[3] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A., Exterior differential systems, Mathematical Sciences Research Institute Publications, 18, Springer-Verlag, New York, 1991 | MR | Zbl
[4] Bryant R., Griffiths P., Hsu L., “Hyperbolic exterior differential systems and their conservation laws. I”, Selecta Math. (N.S.), 1 (1995), 21–112 | DOI | MR | Zbl
[5] Bryant R., Griffiths P., Hsu L., “Hyperbolic exterior differential systems and their conservation laws. II”, Selecta Math. (N.S.), 1 (1995), 265–323 | DOI | MR | Zbl
[6] Cartan E., “Les problèmes d'équivalence”, Oeuvres complètes, Vol. 2, Gauthier-Villars, Paris, 1955, 1311–1334 | MR
[7] Courant R., Hilbert D., Methods of mathematical physics, Vol. II: Partial differential equations, Interscience Publishers, New York – London, 1962 | MR | Zbl
[8] Eendebak P. T., Contact structures of partial differential equations, Ph.D. Thesis, Utrecht University, 2006
[9] Gardner R. B., “A differential geometric generalization of characteristics”, Comm. Pure Appl. Math., 22 (1969), 597–626 | DOI | MR | Zbl
[10] Gardner R. B., The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989 | MR | Zbl
[11] Gardner R. B., Kamran N., “Characteristics and the geometry of hyperbolic equations in the plane”, J. Differential Equations, 104 (1993), 60–116 | DOI | MR | Zbl
[12] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Tome II, Librairie Scientifique: A. Hermann, Paris, 1898 | Zbl
[13] Juráš M., Geometric aspects of second-order scalar hyperbolic partial differential equations in the plane, Ph.D. Thesis, Utah State University, 1997
[14] Kushner A., Lychagin V., Rubtsov V., Contact geometry and nonlinear differential equations, Cambridge University Press, 2007 | Zbl
[15] Kruglikov B., “Classification of Monge–Ampère equations with two variables”, Geometry and Topology of Caustics – CAUSTICS '98 (Warsaw), Banach Center Publ., 50, Polish Acad. Sci., Warsaw, 1999, 179–194 | MR | Zbl
[16] Lepage T., “Sur certaines formes différentielles associées aux équations du type de Monge–Ampere provenant du “Calcul des Variations””, Bulletin Acad. Bruxelles, 15 (1929), 829–848 | Zbl
[17] Lychagin V. V., “Contact geometry and second-order nonlinear differential equations”, Russian Math. Surveys, 34 (1979), 137–165 | DOI | MR | Zbl
[18] Marvan M., Vinogradov A. M., Yumaguzhin V. A., “Differential invariants of generic hyperbolic Monge–Ampère equations”, Cent. Eur. J. Math., 5 (2007), 105–133 ; nlin.SI/0604038 | DOI | MR | Zbl
[19] Morimoto T., “La géométrie des équations de Monge–Ampère”, C. R. Acad. Sci. Paris, Sér. A-B, 289 (1979), A25–A28 | MR
[20] Mubarakzjanov G. M., “The classification of the real structure of five-dimensional Lie algebras”, Izv. Vysš. Učebn. Zaved. Matematika, 1963, no. 3(34), 99–106 | MR
[21] Mubarakzjanov G. M., “Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element”, Izv. Vysš. Učebn. Zaved. Matematika, 1963, no. 4(35), 104–116 | MR
[22] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[23] Petrescu S., “Sur les invariants des équations de Goursat”, Ann. Sci. Univ. Jassy I, 24 (1938), 232–256
[24] Stormark O., Lie's structural approach to PDE systems, Encyclopedia of Mathematics and its Applications, 80, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[25] Vranceanu G., “La géométrisation des équations aux dérivées partielles du second ordre”, J. Math. Pures Appl., 6 (1937), 361–374
[26] Vranceanu G., “Sur les invariants des équations aux dérivées partielles du second ordre”, Bull. Math. Soc. Roumaine Sci., 42 (1940), 91–105 | MR | Zbl