@article{SIGMA_2008_4_a54,
author = {Marcos Rosenbaum and J. David Vergara and L. Rom\'an Juarez},
title = {Space-Time {Diffeomorphisms} in {Noncommutative} {Gauge} {Theories}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a54/}
}
TY - JOUR AU - Marcos Rosenbaum AU - J. David Vergara AU - L. Román Juarez TI - Space-Time Diffeomorphisms in Noncommutative Gauge Theories JO - Symmetry, integrability and geometry: methods and applications PY - 2008 VL - 4 UR - http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a54/ LA - en ID - SIGMA_2008_4_a54 ER -
Marcos Rosenbaum; J. David Vergara; L. Román Juarez. Space-Time Diffeomorphisms in Noncommutative Gauge Theories. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a54/
[1] Rosenbaum M., Vergara J. D., Juarez L. R., “Canonical quantization, space-time noncommutativity and deformed symmetries in field theory”, J. Phys. A: Math. Theor., 40 (2007), 10367–10382 ; hep-th/0611160 | DOI | MR | Zbl
[2] Isham C. J., Kuchař K. V., “Representations of space-time diffeomorphisms. I. Canonical parametrized field theories”, Ann. Physics, 164 (1985), 288–315 | DOI | MR | Zbl
[3] Isham C. J., Kuchař K. V., “Representations of space-time diffeomorphisms. II. Canonical geometrodynamics”, Ann. Physics, 164 (1985), 316–333 | DOI | MR | Zbl
[4] Kuchař K. V., Stone S. L., “A canonical representation of space-time diffeomorphisms for the parametrized maxwell field”, Classical Quantum Gravity, 4 (1987), 319–328 | DOI | MR | Zbl
[5] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102 ; hep-th/0408069 | DOI | MR
[6] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532 ; hep-th/0504183 | DOI | MR | Zbl
[7] Aschieri P., Dimitrijevic M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1912 ; hep-th/0510059 | DOI | MR
[8] Wess J., “Einstein–Riemann gravity on deformed spaces”, SIGMA, 2 (2006), 089, 9 pp., ages ; hep-th/0611025 | MR | Zbl
[9] Vassilevich D. V., “Twist to close”, Modern Phys. Lett. A, 21 (2006), 1279–1284 ; hep-th/0602185 | DOI | MR
[10] Aschieri P., Dimitrijevic M., Meyer F., Schraml S., Wess J., “Twisted gauge theories”, Lett. Math. Phys., 78 (2006), 61–71 ; hep-th/0603024 | DOI | MR | Zbl
[11] Chaichian M., Tureanu A., “Twist symmetry and gauge invariance”, Phys. Lett. B, 637 (2006), 199–202 ; hep-th/0604025 | DOI | MR
[12] Chaichian M., Tureanu A., Zet G., “Twist as a symmetry principle and the noncommutative gauge theory formulation”, Phys. Lett. B, 651 (2007), 319–323 ; hep-th/0607179 | DOI | MR
[13] Banerjee R., Samanta S., “Gauge symmetries on $\theta$-deformed spaces”, J. High Energy Phys., 2007:02 (2007), 046, 17 pp., ages ; hep-th/0611249 | DOI | MR
[14] Rosenbaum M., Vergara J. D., Juárez L. R., “Dynamical origin of the $\star_\theta$-noncommutativity in field theory from quantum mechanics”, Phys. Lett. A, 354 (2006), 389–395 ; hep-th/0604038 | DOI | MR | Zbl
[15] Kuchař K. V., “Canonical quantization of gravity”, Relativity, Astrophysics and Cosmology, ed. W. Israel, Reidel Pub. Co., Dordrecht, Holland, 1973, 237–288
[16] Kuchař K. V., “Kinematics of tensor fields in hyperspace. II”, J. Math. Phys., 17 (1976), 792–800 | DOI | MR
[17] Dirac P. A. M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series 2, Belfer Graduate School of Science, New York, 1964 | MR
[18] Kuchař K. V., “Kinematics of tensor fields in hyperspace. III”, J. Math. Phys., 17 (1976), 801–820 | DOI | MR
[19] Chaichian M., Presnajder P., Shikh-Jabbari M. M., Tureanu A., “Noncommutative gauge field theories: a no-go theorem”, Phys. Lett. B, 526 (2002), 132–136 ; hep-th/0107037 | DOI | MR | Zbl
[20] Arai M., Saxell S., Tureanu A., Uekusa N., “Circumventing the no-go theorem in noncommutative gauge field theory”, Phys. Lett. B, 661 (2008), 210–215 ; arXiv:0710.3513 | DOI | MR
[21] Bleecker D., Gauge theory and variational principles, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR | Zbl
[22] Blohmann Ch., “Realization of $q$ deformed space-time as star product by a Drinfeld twist”, Group 24: Physical and Mathematical Aspects of Symmetries, Proceedings of International Colloquium on Group Theoretical Methods in Physics (July 15–20, 2002, Paris), IOP Conference Series, 173, eds. J. P. Gazeau, R. Kerner, J. P. Antoine, S. Metens and J. Y. Thibon, 2003, 443–446; math.QA/0402199
[23] Oeckl R., “Untwisting noncommutative $\mathbb R^d$ and the equivalence of quantum field theories”, Nuclear Phys. B, 581 (2000), 559–574 ; hep-th/0003018 | DOI | MR | Zbl
[24] Chaichian M., Presnajder M., Tureanu A., “New concept of relativistic invariance in NC space-time: twisted Poincaré symmetry and its implications”, Phys. Rev. Lett., 94 (2005), 151602, 15 pp., ages ; hep-th/0409096 | DOI
[25] Wess J., “Deformed coordinate spaces: derivatives”, Proceedings of the BW2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges beyond the Standard Model: Perspectives of Balkans Collaboration (August 29 – September 2, 2003, Vrnjacka Banja, Serbia), eds. G. Djordjevic, L. Nesic and J. Wess, World Scientific, 2005, 122–128; hep-th/0408080
[26] Kosinski P., Maslanka P., Lorentz-invariant interpretation of noncommutative space-time: global version, hep-th/0408100
[27] Sov. Phys. JETP, 4 (1957), 891–898 | MR | Zbl
[28] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[29] Romero J. M., Vergara J. D., Santiago J. A., “Noncommutative spaces, the quantum of time and the Lorentz symmetry”, Phys. Rev. D, 75 (2007), 065008, 7 pp., ages ; hep-th/0702113 | DOI | MR
[30] Wess J., “Deformed gauge theories”, J. Phys. Conf. Ser., 53 (2006), 752–763 ; hep-th/0608135 | DOI
[31] Giller S., Gonera C., Kosinski P., Maslanka P., “On the consistency of twisted gauge theory”, Phys. Lett. B, 655 (2007), 80–83 ; hep-th/0701014 | DOI | MR
[32] Kassel Ch., Quantum groups, Springer-Verlag, New York – Berlin – Heidelberg, 1995 | MR
[33] Vassilevich D. V., Symmetries in noncommutative field theories: Hopf versus Lie, arXiv:0711.4091
[34] Duenas-Vidal A., Vazquez-Mozo M. A., Twisted invariances of noncommutative gauge theories, arXiv:0802.4201 | MR