@article{SIGMA_2008_4_a52,
author = {E. John Parkes},
title = {Periodic and {Solitary} {Travelling-Wave} {Solutions} of an {Extended} {Reduced} {Ostrovsky} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2008},
volume = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a52/}
}
E. John Parkes. Periodic and Solitary Travelling-Wave Solutions of an Extended Reduced Ostrovsky Equation. Symmetry, integrability and geometry: methods and applications, Tome 4 (2008). http://geodesic.mathdoc.fr/item/SIGMA_2008_4_a52/
[1] Ostrovsky L. A., “Nonlinear internal waves in a rotating ocean”, Oceanology, 18 (1978), 119–125
[2] Stepanyants Y. A., “On stationary solutions of the reduced Ostrovsky equation: Periodic waves, compactons and compound solitons”, Chaos Solitons Fractals, 28 (2006), 193–204 | DOI | MR | Zbl
[3] Parkes E. J., “Explicit solutions of the reduced Ostrovsky equation”, Chaos Solitons Fractals, 31 (2007), 602–610 | DOI | MR | Zbl
[4] Boyd J. P., “Ostrovsky and Hunter's generic wave equation for weakly dispersive waves: matched asymptotic and pseudospectral study of the paraboidal travelling waves (corner and near-corner waves)”, European J. Appl. Math., 16 (2005), 65–81 | DOI | MR | Zbl
[5] Vakhnenko V. A., “Solitons in a nonlinear model medium”, J. Phys. A: Math. Gen., 25 (1992), 4181–4187 | DOI | MR | Zbl
[6] Vakhnenko V. A., “High-frequency soliton-like waves in a relaxing medium”, J. Math. Phys., 40 (1999), 2011–2020 | DOI | MR | Zbl
[7] Parkes E. J., “The stability of solutions of Vakhnenko's equation”, J. Phys. A: Math. Gen., 26 (1993), 6469–6475 | DOI | MR | Zbl
[8] Morrison A. J., Parkes E. J., Vakhnenko V. O., “The $N$ loop soliton solution of the Vakhnenko equation”, Nonlinearity, 12 (1999), 1427–1437 | DOI | MR | Zbl
[9] Morrison A. J., Parkes E. J., “The $N$-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation)”, Chaos Solitons Fractals, 16 (2003), 13–26 | DOI | MR | Zbl
[10] Espinosa A., Fujioka J., “Hydrodynamic foundation and Painlevé analysis of Hirota–Satsuma-type equations”, J. Phys. Soc. Japan, 63 (1994), 1289–1294 | DOI | MR | Zbl
[11] Morrison A. J., Parkes E. J., “The $N$-soliton solution of a generalised Vakhnenko equation”, Glasg. Math. J., 43 (2001), 65–90 | DOI | MR
[12] Liu Y.-P., Li Z.-B., Wang K.-C., “Symbolic computation of exact solutions for a nonlinear evolution equation”, Chaos Solitons Fractals, 31 (2007), 1173–1180 | DOI | MR | Zbl
[13] Parkes E. J., Duffy B. R., Abbott P. C., “The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations”, Phys. Lett. A, 295 (2002), 280–286 | DOI | MR | Zbl
[14] Vakhnenko V. O., Parkes E. J., “Periodic and solitary-wave solutions of the Degasperis–Procesi equation”, Chaos Solitons Fractals, 20 (2004), 1059–1073 | DOI | MR | Zbl
[15] Parkes E. J., Vakhnenko V. O., “Explicit solutions of the Camassa–Holm equation”, Chaos Solitons Fractals, 26 (2005), 1309–1316 | DOI | MR | Zbl
[16] Parkes E. J., “Some periodic and solitary travelling-wave solutions of the short-pulse equation”, Chaos Solitons Fractals, 36 (2008), 154–159 | DOI | MR
[17] Zhang G. P., Qiao Z. J., “Cuspons and smooth solitons of the Degasperis–Procesi equation under inhomogeneous boundary condition”, Math. Phys. Anal. Geom., 10 (2007), 205–225 | DOI | MR | Zbl
[18] Qiao Z. J., “M-shape peakons, dehisced solitons, cuspons and new 1-peak solitons for the Degasperis–Procesi equation”, Chaos Solitons Fractals, 37 (2008), 501–507 | DOI | MR | Zbl
[19] Qiao Z. J., Zhang G. P., “On peaked and smooth solitons for the Camassa–Holm equation”, Europhys. Lett., 73 (2006), 657–663 | DOI | MR
[20] Qiao Z. J., “The Camassa–Holm hierarchy, $N$-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold”, Comm. Math. Phys., 239 (2003), 309–341 | DOI | MR | Zbl
[21] Byrd P. F., Friedman M. D., Handbook of elliptic integrals for engineers and scientists, Springer, Berlin, 1971 | MR | Zbl
[22] Abramowitz M., Stegun I. A., Handbook of mathematical functions, Dover, New York, 1972
[23] Lenells J., “Traveling wave solutions of the Camassa–Holm equation”, J. Differential Equations, 217 (2005), 393–430 | DOI | MR | Zbl
[24] Li J.-B., “Dynamical understanding of loop soliton solution for several nonlinear wave equations”, Sci. China Ser. A, 50 (2007), 773–785 | DOI | MR | Zbl
[25] Zhang, Lina; Chen, Aiyong; Tang, Jiade, “Special exact soliton solutions for the $K(2,2)$ equation with non-zero constant pedestal”, Applied Mathematics and Computation, 218:8 (2011), 4448–4457 | DOI